FBSNG Application Programmer’s Interface
Reference Manual

Version 1.5

Krzysztof Genser, Tanya Levshina, Igor Mandrichenko

Farms and Clustered Systems Group
Fermi National Accelerator Laboratory



FBSNG API Reference Manual Version 1.5

Table of Contents

DWN R

5

0o oY 116 T o o 5
FBSNG API OV ViEW i tiiitiiti it iieesesae st raessesanesanesans e e snesaneraneranesneeaneenns 5
USING FBSING APl ...t e e e e 8
Common Features Of AP ClasSeS ..uuiiuiiiiii it ii e i aanaeas 9
4.1  RetUrNing STatuUs .. .ot i s s e e e 9
4.2  Generated EXCEPIONS ....uiiii i 9
[ = 1S O 1= L ol 1 = 1= P 11
5.1 FBSClient Methods ..o 11
(@0 1] o 1 Lot il o8 5 3 O =T o 11
(=81 18 Lo T PP 11
[ 1< 8 Lo o I =3 o P 11
Fa =] w8 o o PP 12
S]] 15 o P 12
Lo 1= Y=ot oo 13
GetSectioNOULPUL ... 13
(Lo (o 1Y =T ot o [o Y o P 14
L] LT TS 1 =T ot o o o T 14
[ oY=t 2 o o T P 15
(] 1S =T o o o P 15
[0 T 0T 0 16
Lo =T =T LU < L= T P 16
QUL LIS ottt i i e e 17
L0 1= LU T T 17
0] Fo [ 10 T T 18
=] LT ET =T LU= T T PP 18
T Yol @ U = U= PP 19
L8] 0 Lo Tl (@ T U= 19
(=T 0 [0}V Z=T @ L= L= P 20
CreateGlobalRESOUICE ... i e e e e e 20
SELGIODAIRESOUICE .ottt e e e e 21
o [=1a ] o] =1 12 ol I £ PP 21
[ L= 0] | 2= o[ @ 1 T = 21
[0 < €] ]| 2= ol U 1=T= o 1= P 22
FEMOVEGIODAIRESOUICE ..ttt ae et eaaneeas 22
(ol g <T= =] o Tor= || U= o U o =P 23
GEtLOCAIRSICLISE .ttt i e 23
o= o ol 4= ool 18 [ ] - 24
Lo L=y el 1 2] oL == Yo =P 24
FEMOVELOCAIRESOUINCE. . sttt ettt it e ittt s et e et e s e e eanaeeenseerannens 25
CrEALERSICP OO ...t e e e 26
SEERSICP OO . e e 26
GEELOCAIPOOILISE . . ettt 27
GetGlobalPOOILIST ..t e 27
GEERESOUINCEP OO ...ttt e e e e e 28
FEMOVERESOUINCEP OO ..ttt ittt et e s a et et e e e anaeeaseeeaneenns 28
Tl g <=1 (=] Lo T [T = 1= 29
[ L=\ Lo Ta [T @1 1= == I 1= o P 29
o=\ Lo Yo £=T @1 = P 30
(=] Lo AVZ=T N Lo Ta 1T @ F= 1= =P 30
Fa =] )oY = PP 31

0] o 11 o Y 1 31



FBSNG API Reference Manual Version 1.5

=] 12T E1 =] 1 o T 32
GEEPIOCESS TY PO LIS ottt i i i e 32
Lol gt =] el oLl T 1NV o < 32
o L=yl o o Yol =TT 1N/ o = 33
(=T 0 010NV =] o o0l T ] 1AV 5 33
LY =] ol .0 L1 L 34
I o = 1 Lo 01 I LT ol 0 F= T 35
T A 1= o i o T = 35
(0] 13 o U (0 1 e 35
Lo L= =Tt of [0 1S P 35
F= T [ 1Yo o o A 36
= T3 1L o [0 o 36
L1 o0 1 37
ValidateDePeNdENCIES. . vttt s e 37
S =15 S 37
7 FBS S ECtIONDESC ClaSS tiiittiiii ittt ittt isiisttestaissstesssasssatessrassreesiannnnees 39
72 T B T Y = T 1 1= 0 01 0T 39
7220 1= i o T 40
6500 013 o U {01 40
o0 [0 15 =S 41
B 1= o o P 42
S o =13 o] o) K g} o T O 1= 17 43
8.1  Data MeMD IS . s 43
S T A 1=l o Y £ 43
LY=o o [0 1 43
[ 1= Y =T o [0 o 43
1L 44
LS 1) 1 44
1 N ol = 13 Y=Yt o] o 11 ] {0 T = 1= 46
0.1  Data MEMD IS i s 46
1S T 1=l o Y £ 47
[ 1= o o g Y =] 47
1] 5 1] [ 47
0 48
L= 1T 1= 48
= o o 49
L 49
=Y 1T 1 50
10 FBSProCESSINTO Class .uuviiiiiiiiiiiiiiiistiesiiinsreeriinnssessssnnsssesssnsnsresrisnnsnnesens 51
10.1 [0 = = TR 1 = ] 0] T 51
10.2 3= i o Yo 52
LS 1) 1 52
11 FBSSUDPIrOCESSINTO Class tuiuiiiiiiiiie i it s et e s s riatee s sraneeeereanneneerenn 53
11.1 Data MEMID IS ittt i i s et a e e raeas 53
12 FBSNOAECIASSINTO ClasS . uuviitttttrriietreerrineeeerranseeerrrnnnsresrransresrrannnrerens 53
12.1 [0 = =T 1 = ] 0= = 53
12.2 3 = 1 o Yo 54
=Y 1T 1 54
(ST 2] = o P 54
LY=o I Yor= || 1] 3 55
= T [ 110 T 55
(=] 0 L0 1Y 1 o T 56

13 (215357 Lo Yo 1= 1 g} o O 1= 133 57



FBSNG API Reference Manual Version 1.5

13.1 Data MM IS ittt i e e i 57
13,2 MEENOAS ittt e 57
LS 1) 1 57

14 FBSQUEUEINTO Class .ottt ittt e e e eeas 59
14.1 Data MEMID IS ittt i i s e e e e e s 59
14.2 3 = 1 o Yo 59
10 59
(=11 T 60

0 o 60

0] 0o T~ 61

BT o o = | o < 61

=] =T 1 62

15  FBSProcTypeInfo Class ..oiiiuiiiiiiiii i i e e e aaees 64
15.1 [t T 1= 0] 0] T 64

R 0 1 1= o Lo T = 65
LY uoY ot 28] ol B L] 65
LYo 2 0T 2] ] D 1 £ 65
SEERSICUOEA .ttt 66
LSS0 N = a0 1 66
LY=o 4 F= 341 o T L1000 11 ¥ | o 66

(1< (@ O I T 0 1= T 1 o 67
LY=L= 1IN 1= T 0 1 67

=] =T 1 67

L 1T 68

F= 1110} 1 10 1T 69
AISAOWNOAES .ot i e e et 69

16 (5 3SY V7Y o Lo IS = TS O F= 1T 71
16.1 3 = 1 0 Yo 71
SUD S I D ittt i e e 71

U R U] 0o | o1 71
LY=o [0 1 1 =) f 71

] oYl =TT = ) = S 72
17T T 72
16.2  Virtual Methods . ...viiiii i e 72
sectionStateChanged ...t 73
processStateChanged. ... ..o 73
SECHIONDEIEEEA .o 73
16.3 Event Listener Programming Examples ......cccooiiiiiiiiiiiiiiiiiiicciiceee 73
Example 1: Monitoring section status .........ccoiiiiii i 73
Example 2: Polling for section status changes..........coiiiiiiiiiiiiiciiiicciiice 75
AppendixX A: JDF FOrmMat. ..o 76
Appendix B: Hold Time Representation.......covviiiiiiiiii i i nneas 79
Appendix C: More API EXamples. ..o i i e 80

Appendix D: GlOSSAry Of TIMIS .ouuitiiiite e re e e e e e e aneens 85



FBSNG API Reference Manual Version 1.5
API Overview

1

Introduction

This document is a part of set of the FBSNG documentation. It describes functionality
of Python version of FBSNG Application Programmer’s Interface (API). Description of
FBSNG features is left beyond the scope of this document. Other parts of

documentation should be consulted for more information on specific FBSNG features:

2

FBSNG User’s Guide describes FBSNG command line interface as well as basic
features;

FBSNG Resources Concepts document describes the concepts of FBSNG
resource management;

FBSNG Scheduler document is about scheduling algorithms and related
configuration issues;

FBSNG Installation and Administration Guide describes installation and
support procedures.

FBSNG API Overview

The FBSNG API provides access to FBSNG run-time and configuration information. It
is organized as a set of classes divided into the following major groups:

API front-end FBSClient class. This class performs all communication
transactions between API client and FBSNG components. In order to use
FBSNG API, user application must create an object of this class. An FBSClient
object provides methods for:

o Job submission, monitoring and control

Farm resource utilization monitoring
Queue monitoring and control
Monitoring and control of farm nodes
Obtaining farm configuration information
o Dynamic modification of farm configuration
FBSClient object creates objects of “informational” API classes such as
FBSJobInfo, FBSSectionInfo, FBSProcessinfo, etc.
Job construction and submission:

o FBSJobDesc - representation of an FBSNG job to be submitted. Each
FBSJobDesc object is a container of one or more FBSSectionDesc
objects.

o FBSSectionDesc - representation of individual FBSNG job section as a
part of a job to be submitted to FBSNG.

In order to submit a job using API, user must
1. Create an FBSClient object
2. Create FBSJobDesc object and populate it with one or more
FBSSectionDesc objects either using existing Job Description
File (see Appendix A) or creating FBSSectionDesc objects and
adding them to the FBSJobDesc object.
3. Use FBSClient object to send FBSJobDesc object for submission.
For more information, refer to FBSJobDesc and FBSSectionDesc sections of
this document.
Run-time batch job and farm status monitoring. The following
“informational” classes provide run-time information about batch jobs, farm
resource utilization and FBSNG configuration.
o FBSJobInfo - job monitoring and control;

O O O O



FBSNG API Reference Manual Version 1.5
API Overview

o FBSSectionInfo — monitoring and control of individual job section;

FBSProcessInfo and FBSSubProcessInfo — monitoring of individual

batch processes and their subprocesses;

FBSQueuelnfo — FBSNG queue monitoring, control and configuration;

FBSNodeClassInfo — farm node class configuration and monitoring;

FBSNodelnfo - individual farm node status monitoring and control;

FBSProcTypelnfo — configuration and run-time information about a

process type.
Objects of all informational classes are created by FBSClient object or objects
of other FBSNG API classes. API client application should not create objects of
these classes directly.

¢ Asynchronous FBSNG event notification. FBSEventListener class is a
virtual base class that provides an interface to FBSNG Event Manager. Using
this class, FBSNG API client application can build its own event-based job
status monitoring agent.

O

O O O O

Currently, only Python binding of FBSNG API is available.

Relationships between different API classes are shown on Fig. 1.



FBSNG API Reference Manual Version 1.5
API Overview

FBSNG
Components
Job Submission A Job Status and Control
A
)
FBSJobDesc FBSClient FBSJobinfo
y
FBSSectionDesc FBSQueuelnfo |la— Sy FBSSectionInfo
FBSNodeClassinfo
Legend
FBSProcesslinfo
,
-y oy
. FBSNodelnfo -~
Object A
. . \ J
contains object B
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
@_ FBSProcTypelnfo - - FBSSubProcessinfo
Object A creates
. .
object B g ‘
Farm Configuration
@ ————————————— and Status
Object A is used
by object B

Figure 1. FBSNG API Classes



FBSNG API Reference Manual Version 1.5
Using FBSNG API

3 Using FBSNG API

In order to use FBSNG API, client application must import all or only necessary
names from FBS_API module using one of the following methods:

from FBS API import * # import all names
from FBS API import FBSClient, FBSJobDesc # import some names

import FBS API # import only the module

If first method is used, the following names will be imported: FBSClient,
FBSJobDesc, FBSSectionDesc and FBSError. If third method is used, class names will
have to be explicitly qualified with module name “FBS_API”. All examples of Python
code in this document are written assuming first or second method was used.

Actual location of FBS_API.py module must be included into Python library search
path defined by PYTHONPATH. FBSNG comes with necessary user environment set-
up scripts that assign correct value to this and other environment variables. UPS
users can use FBSNG API after issuing “setup fbsng” command. See FBSNG User’s
Guide for more details on setting up user environment.



FBSNG API Reference Manual Version 1.5
Common Features

4 Common Features of API Classes

4.1 Returning Status

Many API methods return completion status information as a 2-tuple (status,
reason). By convention, status 1 indicates successful completion, and status 0
indicates failure. On success, the reason field is either ‘*OK’ or some warning
message. On failure, the reason field of the tuple contains a specific explanation of
what happened.

For example:
# Cancel or kill a section
from FBS API import FBSClient
fc=FBSClient ()
si = fc.getSection(‘123.MAIN')
sts, reason = si.kill ()
if sts:
if reason == ‘0OK':
print ‘Done’
else:
print ‘Warning: ‘', reason
else:
print ‘Failed: ', reason

4.2 Generated Exceptions

Almost all methods of API classes described below generate standard Python
KeyError exception on an attempt to get information or change state of a non-
existing object. For example, every section normally finishes and eventually is
removed from FBSNG. After the section is removed, refresh method of
FBSSectionInfo class will generate a KeyError exception. The exception supplies the
client with a textual explanation of the reason for generating the exception. The
following is an example of proper exception handling for such situations:



FBSNG API Reference Manual Version 1.5
Common Features

# wait for section ‘123.MAIN’ to finish and
# get removed from FBSNG

from FBS API import *
fc=FBSClient ()
si=fc.getSection (‘'123.MAIN')
while si.State != ‘done’:
time.sleep (10)
try: si.refresh{()
except KeyError, msg:
print ‘Section disappeared:’, msg
sys.exit (1)
print ‘Section finished at ', time.ctime (si.ExitTime)

# now wait until is disappears
while 1:
time.sleep (10)
try: si.refresh{()
except KeyError, msg
print ‘Section disappeared:’, msg
sys.exit (1)

Note that after a section finishes, it is kept in FBSNG for some time specifically to
make sure that applications such as this have a chance to get exit status and other
information about the section that just has finished.

Another possible type of exception generated by virtually any method of FBSNG is
socket.error. This exception is generated when the BMGR process is not running, or
is in initial recovery state, ignoring connection requests from the API clients.
Normally, if an API client receives such an exception, the failed operation should be
repeated after several seconds.

FBSError exception defined in FBS_API module is generated only when the API
detects an error in the communication protocol with other FBSNG components. This
exception should not normally be generated. When this happens, it is likely to be
caused by an error in the API or another FBSNG component. This should be reported
to FBSNG support group.

-10 -



FBSNG API Reference Manual Version 1.5
FBSClient Class

5 FBSClient Class

FBSClient class provides communication between an API client application and
FBSNG components.

5.1 FBSClient Methods

Constructor FBSClient

Purpose: creates new FBSClient object. All communication with FBSNG goes through
FBSClient object. In order to use FBSNG API, client application must create at least
one FBSClient object.

Synopsis: FBSClient ()
Arguments: none

Return value: new FBSClient object

submitJob
Purpose: submits a job to FBSNG.

Synopsis: submitJob (job desc)

Arguments:
e job_desc: FBSJobDesc object

Return value: 2-tuple (status, text)
e status: Integer - is 1 on success and 0 on failure
e text: String - the job id on success, or textual explanation of the reason for
failure

Exceptions: if the job is empty (contains no sections) or some section parameters
are invalid, the method generates ValueError exception.

Example:
from FBS API import FBSClient
fc=FBSClient ()
J = FBSJobDesc (jdf)
sts, txt = fc.submitJob (j)
if sts:
print ‘Job id = ', txt

else:
print ‘Submit failed: ', txt
getJoblList
Purpose: queries FBSNG for list of IDs of jobs matching certain criteria
Synopsis: getJobList (username=None, uid=-1, gid=-1)
Arguments:

-11 -



FBSNG API Reference Manual Version 1.5
FBSClient Class

e username: String or None. If not None, only jobs submitted by this user will
be returned.

e uid: Integer. Numeric UNIX user ID. If specified, the list will contain IDs of
jobs submitted by the specified user.

e gid: Integer. Numeric UNIX group ID. If specified, the list will contain IDs of
jobs submitted by the members of specified group.

Return value: List of Strings. Each element of the list is a job ID. List can be empty.

Example:
from FBS API import *
fc=FBSClient ()
1lst = fc.getJobList (uid = 12345)
print ‘Jobs submitted by user #12345:’, string.join(lst)

getJob

Purpose: queries FBSNG for iformation about the job specified with its job ID. The
method returns the information as FBSJobInfo object.

Synopsis: getJob (job_id)

Arguments:
e Job_id: String - ID of the job

Return value: FBSJobInfo object
Exceptions: if the job is not found, the method generates KeyError exception.

Example:
from FBS API import FBSClient
fc=FBSClient ()
try: J = fc.getdJob (jobid)
except KeyError:
print ‘Job %$s not found’ % jobid

else:
print j.State
killJob
Purpose: kills or cancels user’s job
Synopsis: killJob (job id, now=0)
Arguments:

e job_id: String — ID of the job to kill or cancel

e now: Integer - if 1, sends SIGKILL signal to all job processes, otherwise, if 0
(default), or not specified, sends SIGINT, and then SIGKILL after grace period
defined in FBSNG configuration.

Return value: 2-tuple (status, reason)

e status: Integer - is 1 on success and 0 on failure
e reason: String - on failure, textual explanation of the reason for failure

-12 -



FBSNG API Reference Manual Version 1.5
FBSClient Class

In case when the job is not found, returns (0, <warning message>). Only the user
who submitted the job (job owner) can kill it.

Examples:
# kill or cancel all jobs submitted by the user
from FBS API import *
fc=FBSClient ()
for jid in fc.getJobList (uid=os.getuid()) :
sts, reason = fc.killJob (jid)
if sts:
print ‘Job #%s killed’” % jid
else:
print ‘Can not kill job #%s: %s’ % (jid, reason)

getSection

Purpose: returns FBSSectionInfo with information about specific section by section
ID.

Synopsis: getSection (sect id)

Arguments:
e sect_id: String - ID of the section in the form: <job-id>.<section-name>. For
example, "123.MAIN".

Return value: FBSSectionInfo object

Exceptions: if the specified section is not found, generates KeyError exception.

Example:
from FBS API import FBSClient
fc=FBSClient ()
sid = ‘1234.MAIN’
try: si = fc.getSection(sid)
except KeyError:
print ‘Section %s not found’ % sid
else:
print si.State

getSectionOutput

Purpose: retrieves FBSNG internal copy of job section log by section ID.
Synopsis: getSectionOutput (sect id)

Arguments:
e sect_id: String - ID of the section

Return value: list of tuples (time, message). Each element of the list contains one
time-stamped message. Time is returned in the same format as from time.time().
Messages are text string which may contain one or more new-line characters.

Exceptions: if the section output file is not found, the method generates KeyError
exception

-13 -



FBSNG API Reference Manual Version 1.5
FBSClient Class

Examples:

from FBS API import *
fc=FBSClient ()
sid = “1234.MAIN’
try: log = fc.getSectionOutput (sid)
except KeyError:

print ‘Log for section %s not found’ % sid
else:

for t, msg in log:

print time.ctime(t), ‘' ', msg

holdSection

Purpose: if the specified section is pending, holds it in the queue preventing it from
starting.

Synopsis: holdSection (sect id, hold time = -1)

Arguments:
e sect_id: String — ID of the section to hold
e hold_time: Time or String — optional parameter. If specified, section will be
automatically released after the hold_time. By default, section will be held
until it is released. Hold time can be specified either as value returned from
time.localtime(), or as text string in format described in “Hold Time
Specification” section.

Return value: 2-tuple (status, reason)
e status: Integer - is 1 on success and 0 on failure
e reason: String - on failure, textual explanation of the reason for failure

Exceptions: if the section is not found, the method generates KeyError exception.

Examples:
# hold specific section till lam tomorrow
from FBS API import FBSClient

fc=FBSClient ()

try:
sts, reason = fc.holdSection(‘'123.ABC’, ‘+1-01:00:00")
if not sts:
print ‘Can not hold the section: %s’ % reason
except:
print ‘Section not found’
releaseSection

Purpose: releases previously held section
Synopsis: releaseSection (sect id)

Arguments:
e secti_id: String — ID of the section

- 14 -



FBSNG API Reference Manual Version 1.5
FBSClient Class

Return value: 2-tuple (status, reason)
e status: Integer - is 1 on success and 0 on failure
e reason: String - on failure, textual explanation of the reason for failure

Exceptions: if the section is not found, the method generates KeyError exception.

Examples:
# release all sections in a queue
from FBS API import FBSClient
fc = FBSCLient ()
for sid in fc.getQueue (‘LongQueue’) .Sections:
sts, reason = fc.releaseSection(sid)
if not sts:
print ‘Error releasing section %s: %s’ % \
(sid, reason)

incSectPrio
Purpose: increments or decrements priority of a pending section

Synopsis: incSectPrio(sect id, increment)

Arguments:
e sect_id: String — ID of the section
e increment: Integer - desired priority increment (if positive) or decrement (if
negative)

Return value: 2-tuple (status, reason)
e status: Integer - is 1 on success and 0 on failure
e reason: String - on failure, textual explanation of the reason for failure

Exceptions: if the section is not found, the method generates KeyError exception.

Example:
# increase priority of a section by 10
from FBS API import FBSClient
fc=FBSCLient ()
sts, reason = fc.incSectPrio(‘'123.MAIN’,10)
if not sts: print reason

killSection

Purpose: kills or cancels user’s section. A section can be killed only by the user who
submitted it.

Synopsis: killSection(sect id, now=0)
Arguments:
e section_id: String - ID of the section to kill or cancel
e now: Integer = 0 - if 1, sends SIGKILL signal to all section processes,
otherwise, if 0, or not specified, sends SIGINT, and then SIGKILL after grace

period

Return value: 2-tuple (status, reason)

-15 -



FBSNG API Reference Manual Version 1.5
FBSClient Class

e status: Integer - is 1 on success and 0 on failure
e reason: String - on failure, textual explanation of the reason for failure

Exceptions: if the section is not found, the method generates KeyError exception.

Examples:
# kill or cancel all sections in the queue
from FBS API import *
fc=FBSClient ()
for sid in fc.getQueue (‘LongQueue’) .Sections:

sts, reason = fc.killSection(sid)
if sts:
print ‘Section #%s killed’ % sid
else:
print ‘Can not kill section #%s: %s’ % (sid, reason)
getProcess

Pupose: returns information about specific batch process identified by FBSNG
process ID.

Synopsis: getProcess (proc_id, local details=1)

Arguments:
e proc_id: String — Batch process ID (BPID) of the process in format:
<job_id>.<section_name>.<logical_process_id>, for example “"123.MAIN.2".
e local_details: Integer = 1 - optional argument, if local_details=1 (default), all
available information about the process will be returned. Otherwise, if
local_details=0, some returned information may be inaccurate, but the
method will work faster. See description of FBSProcessInfo for details.

Return value: FBSProcessInfo object with information about the process

Exceptions: if the information about the process is not found, the method
generates KeyError exception.

Examples:
from FBS API import FBSClient
fc=FBSClient ()
pid = ‘1234.MAIN.5’
try: pi = fc.getProcess (pid)
except KeyError:
print ‘Process %s not found’ % pid
else:
print ‘Node %s, PID = %d’ % (pi.Node, pi.UPID)

createQueue

Purpose: creates new queue. Queue is created in locked state, and must be unlocked
later.

Synopsis: createQueue (name, def proc_ type)

- 16 -



FBSNG API Reference Manual Version 1.5
FBSClient Class

Arguments:
e name: String - name of the queue to create
e def_proc_type: String - name of the default process type for the queue

Return value: FBSQueuelnfo object representing the new queue

Exceptions: if a queue with the same name already exists, or the client is not
authorized to perform the operation, or in case of another error generates ValueError
exception with text string explaining the reason for failure as the value.

Example:
# create new queue and then unlock it
from FBS API import *
fc = FBSClient ()
try: g = fc.createQueue (‘TestQ’,’MonteCarlol’)
except ValueError, reason:
print ‘Can not create queue: ', reason
else:
g.unlock ()

getQueuelist

Purpose: returns list of FBSNG queues
Synopsis: getQueuelList ()
Arguments: none

Return value: List of Strings, each element is a queue name. List can be empty.

Examples:
from FBS API import *
fc=FBSClient ()
qglst = fc.getQueuelList ()
print “Queues: “,string.join(glst)

getQueue
Purpose: returns information about specific queue by its name.

Synopsis: getQueue (gname)

Arguments:
e gname: String — name of the queue

Return value: FBSQueuelnfo object with information about the queue
Exceptons: If the queue is not found, the method generates KeyError exception.

Examples:

-17 -



FBSNG API Reference Manual Version 1.5
FBSClient Class

from FBS API import FBSClient
fc=FBSClient ()
glst = fc.getQueuelist ()
for gname in glst:
gi = fc.getQueue (gn)

[o)

print ‘%s: %s’ % (gn, string.join(gi.Sections))

holdQueue

Purpose: puts a queue on hold, disabling starting new sections from this queue
Synopsis: holdQueue (gname)

Arguments:
e gname: String - name of the queue

Return value: 2-tuple (status, reason)
e status: Integer - is 1 on success and 0 on failure
e reason: String - on failure, textual explanation of the reason for failure

Exceptions: if the queue is not found, the method generates KeyError exception.

Examples:
# Hold individual queue
from FBS API import FBSClient
fc = FBSClient ()

sts, reason = fc.holdQueue (‘FastQ’)
if not sts:

print ‘Error: ', reason
else:

print ‘done’

releaseQueue

Purpose: releases previously held queue, re-enabling starting of new sections from
it.

Synopsis: releaseQueue (gname)

Arguments:
e gname: String - name of the queue

Return value: 2-tuple (status, reason)
e status: Integer - is 1 on success and 0 on failure
e reason: String - on failure, textual explanation of the reason for failure

Exceptions: if the queue does not exist, the method generates KeyError exception.

- 18 -



FBSNG API Reference Manual Version 1.5
FBSClient Class

Examples:
# Release all existing queues
from FBS API import *
fc = FBSClient ()
for gn in fc.getQueuelist():
sts, reason = fc.releaseQueue (gn)
if sts:
print ‘Queue <%s> released’ % gn
else:
print ‘Can not release queue <%s>: %s’ % (gn, reason)

lockQueue
Purpose: disables submitting new sections into the queue (locks the queue).

Synopsis: lockQueue (gname)

Arguments:
e gname: String - name of the queue

Return value: 2-tuple (status, reason)
e status: Integer - is 1 on success and 0 on failure
e reason: String - on failure, textual explanation of the reason for failure

Exceptions: if the queue does not exist, the method generates KeyError exception.

Examples:
# Lock all existing queues
from FBS API import *
fc = FBSClient ()
for gn in fc.getQueuelist():
sts, reason = fc.lockQueue (gn)
if sts:
print ‘Queue <%s> locked’ % gn
else:
print ‘Can not lock queue <%s>: %$s’ % (gn, reason)

unlockQueue
Purpose: unlocks previously locked queue.

Synopsis: unlockQueue (gname)

Arguments:
e gname: String — name of the queue

Return value: 2-tuple (status, reason)
e status: Integer - is 1 on success and 0 on failure
e reason: String - on failure, textual explanation of the reason for failure

Exceptions: if the queue does not exist, the method generates KeyError exception.

-19 -



FBSNG API Reference Manual Version 1.5
FBSClient Class

Examples:
# Unlock all locked queues
from FBS API import FBSClient
fc = FBSClient ()
for gn in fc.getQueuelist():
if fc.getQueue (gn) .IsLocked:
sts, reason = fc.unlockQueue (gn)
if sts:
print ‘Queue <%s> unlocked successfully’ % gn
else:
print ‘Can not unlock queue <%s>: %s’ % \
(gqn, reason)
else:
print ‘Queue <%s> was not locked’ % gn

removeQueue

Purpose: removes a queue from FBSNG configuration. Only empty queue can be
removed.

Synopsis: removeQueue (gname)

Arguments:
e gname: String - name of the queue

Return value: 2-tuple (status, reason)
e status: Integer - is 1 on success and 0 on failure
e reason: String - on failure, textual explanation of the reason for failure

Example:
# remove queue “TestQueue”
from FBS API import FBSClient
fc=FBSClient ()
sts, reason = fc.removeQueue (“TestQueue”)
if sts:
print ‘Done’
else:
print reason

createGlobalResource
Purpose: creates new global resource.

Synopsis: createGlobalResource (name, capacity)

Arguments:
e name: String - name of the new resource. There should be no resource or
resource pool of any type with the same name defined already.
e capacity: Integer - resource capacity

Return value: 2-tuple (status, text)
e status: Integer - is 1 on success and 0 on failure
e text: String - the job id on success, or textual explanation of the reason for
failure

-20 -



FBSNG API Reference Manual
FBSClient Class

Example:

# create new global resource named ‘NFS’ with capacity 10

from FBS API import *

print FBSClient.createGlobalResource (‘NFS’,10)

# will print either (1,’OK’) on success or
# on failure

setGlobalResource
Purpose: changes capacity for an existing global resource.

Synopsis: setGlobalResource (name, capacity)
Arguments:
e name: String - name of the new resource

e capacity: Integer - new resource capacity

Return value: 2-tuple (status, text)
e status: Integer - is 1 on success and 0 on failure

(0, reason)

Version 1.5

e text: String - the job id on success, or textual explanation of the reason for

failure

Exceptions: if the resource does not exist, generates KeyError exception.

Example:

# set global resource ‘WNFS’ capacity to 0 so that no

# new job section that requires this resource can start

from FBS API import FBSClient

print FBSClient.setGlobalResource (‘NFS’,0)
# will print either (1,’0OK’) on success or
# on failure

getGlobalRsrcList

(0, reason)

Purpose: returns list of known global resources and resource pools

Synopsis: getGlobalRsrcList ()

Arguments: none

Return value: List of Strings, each element of the list is a resource name. List can be

empty.

Examples:

# print list of global resources including pools

from FBS API import FBSClient
fc = FBSClient ()
list = fc.getGlobalRsrcList ()

print ‘Global resources: ', string.join(list)

getGbIRsrcQuota

Purpose: returns usage and quota information for a given global resource or a global

resource pool and a process type

-21 -



FBSNG API Reference Manual Version 1.5
FBSClient Class

Synopsis: getGblRsrcQuota (rsrc_name, proc_type)

Arguments:
e rsrc_name: String - name of the global resource
e proc_type: String — name of the process type

Return value: 2-tuple (usage, quota)
e usage - current utilization of the resource by all processes and sections of the
process type
e quota — process type utilization quota for this resources or None, if quota is
unlimited.

Exceptions: if the resource does not exist or is not global, or the process type does
not exist, the method generates KeyError exception.

Examples:
from FBS API import *
usage, quota = FBSClient () .getGblRsrcQuota (‘nfs disk’,’Worker’)
if quota == None:
quota = ‘(unlimited)’
print ‘Process type Worker uses %s of nfs disk out of %s’ %\
(usage, quota)

getGbiRsrcUsage

Purpose: returns total usage and capacity for a global resource or a global resource
pool on the farm.

Synopsis: getGblRsrcUsage (rsrc_name)

Arguments:
e rsrc_name: String - name of the global resource

Return value: 2-tuple (usage, capacity)
e usage - total amount of the resource currently allocated on the farm
e capacity — capacity for the resource

Exceptions: if the resource does not exist or is not global, the method generates
KeyError exception.

Examples:
from FBS API import FBSClient
usage, capty = FBSClient () .getGblRsrcUsage(‘nfs disk’)
print ‘NFS disk usage: %d out of %d (%d%%)’ % \
(usage, capty, int(float (usage)/float (capty)*100.0))

removeGlobalResource

Purpose: removes a global resource from FBSNG configuration. A resource can be
removed only if it is not in use.

Synopsis: removeGlobalResource (name)

-22 -



FBSNG API Reference Manual Version 1.5
FBSClient Class

Arguments:
e name: String - name of the global resource

Return value: 2-tuple (status, reason)
e status: Integer - is 1 on success and 0 on failure
e reason: String - on failure, textual explanation of the reason for failure

Example:
# remove all unused global resources
from FBS API import FBSClient
fc=FBSClient ()
for rn in fc.getGlobalRsrcList () :
usg, cap = fc.getGblRsrcUsage (rn)
if not usage:
sts, reason = fc.removeGlobalResource (rn)
if sts:
print ‘Resource %s removed’ % rn
else:
print reason

createLocalResource
Purpose: creates new local resource.

Synopsis: createlLocalResource (name)

Arguments:
e name: String - name of the new resource. There should be no resource or
resource pool of any type with the same name defined already.

Return value: 2-tuple (status, text)
e status: Integer - is 1 on success and 0 on failure
e text: String - the job id on success, or textual explanation of the reason for
failure

Example:
# create new local resource named ‘diskl’ for node class ‘Worker’
from FBS API import *
fc = FBSClient ()
sts, reason = fc.createLocalResource (‘diskl’)
if not sts:
print reason
sys.exit (1)
nci fc.getNodeClass ( ‘Worker’)
dct = nci.ResourceCap
dct[‘diskl’] = 18 # 18 Gig
sts, reason = nci.setRsrcCap (dct)
if not sts:
print reason
sys.exit (1)

getLocalRsrcList
Purpose: returns list of known local resources and local resource pools

-23-



FBSNG API Reference Manual Version 1.5
FBSClient Class

Synopsis: getLocalRsrcList ()
Arguments: none

Return value: List of Strings, each element of the list is a resource name. List can be
empty.

Examples:
# print list of local resources including pools
from FBS API import FBSClient
fc = FBSClient ()
list = fc.getLocalRsrcList ()

\

print ‘Local resources: ', string.join(list)

getLclRsrcQuota

Purpose: returns usage and quota information for a given local resource or a local
resource pool and process type.

Synopsis: getLclRsrcQuota (rsrc_name, proc_type)

Arguments:
e rsrc_name: String - name of the global resource
e proc_type: String — name of the process type

Return value: 2-tuple (usage, quota)
e usage - current utilization of the resource by all processes of the process
type. If the resource is node attribute, usage is None.
e quota — process type utilization quota for this resources or None, if quota is
not set up, or if the resource is a node attribute.

Exceptions: if the resource does not exist or is not local, or the process type does
not exist, the method generates KeyError exception.

Examples:
from FBS API import FBSClient
usage, quota = FBSClient () .getLclRsrcQuota (‘cpu’,’Worker’)
if quota == None:
quota = ‘(unlimited)’
print ‘Process type Worker uses %s units of CPU out of %s’ %\
(usage, quota)

getLcIRsrcUsage

Purpose: returns current usage and capacity for a local resource or a local resource
pool on a farm node or on the whole farm. Usage for a pool is defined as sum of
usages for all underlying resources.

Synopsis: getLclRsrcUsage (rsrc_name, node name = None)

Arguments:
e rsrc_name: String - name of the local resource

- 24 -



FBSNG API Reference Manual Version 1.5
FBSClient Class

e node_name: String or None — name of the node. If not specified, or is None,
the method returns total farm utilization and capacity for the resource.

Return value: 2-tuple (usage, capacity)
If node_name is not None:
e usage - amount of the resource currently allocated on the node. If the
resource is an attribute, usage is None.
e capacity - resource capacity of the node, or None if the resource is a node
attribute or a pool composed of attributes.
If node_name is None or not specified:
e usage - total amount of the resource currently allocated on the whole farm,
or None if the resource is an attribute.
e capacity - total resource capacity of the farm, or None if the resource is a
node attribute or a pool composed of node attributes.

Exceptions: if the resource does not exist or is not local, or the node does not
exist, the method generates KeyError exception.

Example:
from FBS API import *
fc=FBSClient ()
usage, cap = fc.getlLclRsrcUsage (‘'dlt’)
print ‘%d out of %d DLT drives are in use on the farm’ % \
(usage, cap)
uh, ch = fc.getLclRsrcUsage (‘'dlt’,”fnsfh’)
print ‘FNSFH has %d drives, %d available’” % (ch, ch-uh)

removelLocalResource

Purpose: removes a local resource from FBSNG configuration. A resource can be
removed only if it is not in use.

Synopsis: removeLocalResource (name)

Arguments:
e name: String - name of the local resource

Return value: 2-tuple (status, reason)

e status: Integer - is 1 on success and 0 on failure
e reason: String - on failure, textual explanation of the reason for failure

-25-



FBSNG API Reference Manual Version 1.5
FBSClient Class

Example:
# remove all unused local resources
from FBS API import FBSClient
fc=FBSClient ()
for rn in fc.getLocalRsrcList ():

usg, cap = fc.getLclRsrcUsage (rn)

if not usage:
sts, reason = fc.removeLocalResource (rn)
if sts:

o)

print ‘Resource %s removed’ % rn
else:
print reason

createRsrcPool
Purpose: creates new resource pOO|.

Synopsis: createRsrcPool (name, rsrc_list)

Arguments:

e name: String - name of the pool to create. There should be no resource or
resource pool of any type with the same name defined already.

e rsrc_list: List of Strings - list of the underlying resources to be combined in
the pool. All listed resources must be of the same type: global or local or local
attribute. Resource pools may not consist of other resource pools.

Return value: 2-tuple (status, text)

e status: Integer - is 1 on success and 0 on failure

e text: String - the job id on success, or textual explanation of the reason for
failure

Example:
# create new resource pool combining attributes representing
# different versions of Linux
from FBS API import FBSClient
sts, reason = FBSClient () .createRsrcPool (‘Linux’,
[Linux5’,’Linux6’])
if sts:
print ‘OK’
else:

print ‘Error: ', reason

Exceptions: if one of the underlying resources does not exist, generates KeyError

exception.

setRsrcPool
Purpose: changes composition of an existing resource pool.

Synopsis: setRsrcPool (name, rsrc list)

Arguments:
e name: String - name of the pool.

- 26 -



FBSNG API Reference Manual Version 1.5
FBSClient Class

e rsrc_list: List of Strings — list of the underlying resources to be combined in
the pool. All listed resources must be of the same type: global or local or local
attribute. Resource pools may not consist of other resource pools.

Return value: 2-tuple (status, text)
e status: Integer - is 1 on success and 0 on failure
o text: String - the job id on success, or textual explanation of the reason for
failure

Exceptions: if the specified resource pool or one of the listed underlying resources
does not exist, generates KeyError exception.

Example:
# remove resource ‘diskl’ from all existing local resource pools
from FBS API import *
fc = FBSClient ()
pools = fc.getLocalPoolList ()
for pool in pools:
lst = fc.getResourcePool (pool)
if ‘diskl’ in 1lst:
lst.remove (‘diskl’)
sts, reason = fc.setRsrcPool (pool, 1lst)
if not sts:
print ‘Can not remove diskl from %s: %$s’ % \
(pool, reason)

getLocalPoolList

Purpose: returns list of local resource pool names.
Synopsis: getLocalPoolList ()
Arguments: none

Return value: List of Strings, each element is a name of a local resource pool. The
list can be empty.

Examples:
# print composition of all local resource pools
from FBS API import FBSClient
fc = FBSClient ()
for pool name in fc.getLocalPoolList():
print ‘Pool %s:’,
string.join(fc.getResourcePool (pool name))

getGlobalPoolList

Purpose: returns list of global resource pool names.
Synopsis: getGlobalPoolList ()

Arguments: none

-27 -



FBSNG API Reference Manual Version 1.5
FBSClient Class

Return value: List of Strings, each element is a name of a global resource pool. The
list can be empty.

Examples:
# print composition of all global resource pools
from FBS API import *
fc = FBSClient ()
for pool name in fc.getGlobalPoolList():
print ‘Pool %s:’,
string.join(fc.getResourcePool (pool name))

getResourcePool

Purpose: returns list of names of the underlying resources the resource pool cosists
of.

Synopsis: getResourcePool ()
Arguments: none

Return value: List of Strings, each element is a name of an underlying resource. The
list can be empty.

Exceptions: if the resource pool does not exist, the method generates KeyError
exception.

Examples:
# print composition of all resource pools
from FBS API import FBSClient
fc = FBSClient ()
lst = fc.getLocalPoolList () + fc.getGlobalPoolList ()
for pool name in lst:
print ‘Pool %s:’,
string.join(fc.getResourcePool (pool name))

removeResourcePool

Purpose: removes a resource from FBSNG configuration. A resource pool can be
removed only if the pool is not in use.

Synopsis: removeResourcePool (name)

Arguments:
e name: String - name of the resource pool

Return value: 2-tuple (status, reason)

e status: Integer - is 1 on success and 0 on failure
e reason: String - on failure, textual explanation of the reason for failure

- 28 -



FBSNG API Reference Manual Version 1.5
FBSClient Class

Example:
# remove all unused node attribute pools
from FBS API import FBSClient
fc=FBSClient ()
for rp in fc.getLocalPoolList () :
usg, cap = fc.getLclRsrcUsage (rn)
if not usage and cap == None:
sts, reason = fc.removeResourcePool (rp)
if sts:
print ‘Pool %s removed’ % rp
else:
print reason

createNodeClass

Purpose: creates new node class without any nodes assigned to it. FBSNodeClassInfo
methods should be used to add configure node class resources and add nodes to it.

Synopsis: createNodeClass (name)

Arguments:
e name: String - name of the node class to create

Return value: FBSNodeClassInfo object representing the new node class.

Exceptions: if a node class with the same name already exists, or the client is not
authorized to perform the operation, or in case of another error generates ValueError
exception with text string explaining the reason for failure as the value.

Example:
# create new node class, set resources for it,
# and add 10 new nodes
from FBS API import FBSClient
fc = FBSClient ()
try: nc = fc.createNodeClass (‘*MCWorkers’)
except ValueError, reason:
print ‘Can not create node class: ', reason
else:
nc.setRsrcCap ({ ‘cpu’ : 200, 'MCWorker’ :None)
for i in range(10):
nc.addNode (‘pcsd’ % (i+l))

getNodeClassList

Purpose: returns list of configured node classes.
Synopsis: getNodeClassList ()
Arguments: none

Return value: list of Strings, each item is node class name.

- 29 -



FBSNG API Reference Manual Version 1.5
FBSClient Class

Examples:
from FBS API import FBSClient
lst = FBSClient () .getNodeClassList ()
print ‘Node classes are: ', string.Jjoin(lst)

getNodeClass

Purpose: returns information on given node class.
Synopsis: getNodeClass (cname)

Arguments:
e cname: String - name of the node class

Return value: FBSNodeClassInfo object with information on the node class

Exceptions: if the node class does not exist, the method generates KeyError
exception.

Examples:
from FBS API import *
nci = FBSClient () .getNodeClassInfo (‘IO Class’)
print ‘IO Nodes: ', string.join(nci.Nodes)
print ‘Resources: !
for rn, rc in nci.ResourceCap.items() :
print ‘%s: %d’ % (rn, rc)

removeNodeClass

Purpose: removes a node class from FBSNG configuration. A node class can be
removed only if there are no nodes of this class.

Synopsis: removeNodeClass (name)

Arguments:
e name: String - name of the node class

Return value: 2-tuple (status, reason)

e status: Integer - is 1 on success and 0 on failure
e reason: String - on failure, textual explanation of the reason for failure

- 30 -



FBSNG API Reference Manual Version 1.5
FBSClient Class

Example:
# remove all empty node classes
from FBS API import FBSClient
fc=FBSClient ()
for ncn in fc.getNodeClassList():

nc = fc.getNodeClass (ncn)

if not nc.Nodes:
sts, reason = fc.removeNodeClass (ncn)
if sts:

o)

print ‘Node class %s removed’ % ncn
else:
print reason

getNode

Purpose: returns information about individual farm node.
Synopsis: getNode (name)

Arguments:

e name: String - name of the node
Return value: FBSNodelnfo object with information about the node
Exceptions: if the node does not exist, the method generates KeyError exception.

Examples:

from FBS API import FBSClient

fc = FBSClient ()

nci = fc.getNodeClass (‘Worker’)

print ‘Nodes of class Worker’:

for nn in nci.Nodes:
ni = fc.getNode (nn)
print ‘%s up:%d held:%d ' % (nn, ni.IsUp, ni.IsHeld),
if ni.IsHeld:

print ‘reason: ', ni.HoldReason

else:

A4

print

holdNode

Purpose: puts a farm node on hold: prevents new batch processes from starting on
the node. This operation does not affect processes already running on the node.

Synopsis: holdNode (name, reason)
Arguments:
e name: String - name of the node to hold
e reason: String - reason for holding
Return value: 2-tuple (status, reason)
e status: Integer - is 1 on success and 0 on failure
e reason: String - on failure, textual explanation of the reason for failure

Exceptions: if the node does not exist, the method generates KeyError exception.

-31-



FBSNG API Reference Manual Version 1.5
FBSClient Class

Example:
# hold all nodes of class WorkerA for maintenance
from FBS API import FBSClient
fc = FBSClient ()
for nn in fc.getNodeClass (‘WorkerA’) .Nodes:
sts, reason = fc.holdNode (nn, “Held for maintenance”)
if not sts:
print ‘Can not hold node <%s>: %s’ % (nn, reason)

releaseNode
Purpose: releases previously held node

Synopsis: releaseNode (name)

Arguments:
e name: String - name of the node to release

Return value: 2-tuple (status, reason)
e status: Integer - is 1 on success and 0 on failure
e reason: String - on failure, textual explanation of the reason for failure

Exceptions: if the node does not exist, the method generates KeyError exception.

Examples:
# release all held nodes of class WorkerA
from FBS API import *
fc = FBSClient ()
for nn in fc.getNodeClass (‘WorkerA’) .Nodes:
if fc.getNode (nn) .IsHeld:
fc.releaseNode (nn)

getProcessTypeList

Purpose: returns list of known process type names

Synopsis: getProcessTypelList ()

Arguments: none

Return value: list of Strings, each item is name of a process type

Examples:
from FBS API import FBSClient
1st = FBSClient () .getProcessTypelList ()
print ‘Process types: ', string.join(lst)

createProcessType

Purpose: creates new process type. Process type is created with unlimited quotas
and zero default process requirements. These parameters must be set using
appropriate methods of FBSProcTypelnfo class.

-32-



FBSNG API Reference Manual Version 1.5
FBSClient Class

Synopsis: createProcessType (name)

Arguments:
e name: String - name of the process type to create

Return value: FBSProcTypelnfo object representing the new process type

Exceptions: if a process type with the same name already exists, or the client is not
authorized to perform the operation, or in case of another error generates ValueError
exception with text string explaining the reason for failure as the value.

Example:
# create new process type, set default resource requirements
# and quotas
from FBS API import *
fc = FBSClient ()

try: pt = fc.createProcessType (‘NewWorker’)
except ValueError, reason:

print ‘Can not create process type: ', reason
else:

pt.setProcRsrcDefs ({ ‘cpu’ :100,’Linux’ :None})
pt.setRsrcQuota ({ ‘cpu’ :10000})

getProcessType

Purpose: returns information about a process type
Synopsis: getProcessType (pt _name)

Arguments:
e pt_name: String

Return value: FBSProcTypelnfo object

Exceptions: if the process type does not exist, the method generates KeyError
exception.

Example: see examples for FBSProcTypelnfo class methods

removeProcessType

Purpose: removes a process type from the FBSNG configuration. A process type can
be removed only if there are no sections in any state using this process type.

Synopsis: removeProcessType (name)

Arguments:
e name: String - name of the process type

Return value: 2-tuple (status, reason)

e status: Integer - is 1 on success and 0 on failure
e reason: String - on failure, textual explanation of the reason for failure

- 33 -



FBSNG API Reference Manual Version 1.5
FBSClient Class

Example:
# remove all process types with names starting with Z
from FBS API import FBSClient
fc=FBSClient ()
for ptn in fc.getProcessTypelist () :
if ptn[0] == ‘Z':
sts, reason = fc.removeProcessType (ncn)
if sts:
print ‘Process type %ptn removed’ % ncn
else:
print reason

setTimeOut
Purpose: sets new value for FBSClient communication time-out

Synopsis: setTimeOut (timeout)

Arguments:
e timeout: Integer = -1 - communication time-out length in seconds. -1 means
that FBSClient will re-try to connect to FBSNG indefinitely. This is optional
argument. -1 is default.

Return value: previously set time-out value

Example:
# Submit a job. If FBSNG is not running, exit after
# 60 seconds
from FBS API import *
import socket

job = FBSJobDesc (‘my.jdf’)
fc=FBSClient ()
fc.setTimeOut (60)
try: sts, text = fc.submitJob (job)
except socket.error:
print ‘FBSNG is not running, try again later’
else:
if sts:
print ‘Job %s submitted’ % text
else:
print ‘Can not submit the job: ', txt

-34 -



FBSNG API Reference Manual Version 1.5
FBSJobDesc Class

6 FBSJobDesc Class

FBSJobDesc class is a job description data structure. It is used to build a job to be
submitted. FBSJobDesc is a container of one or more FBSSectionDesc objects.

6.1 Methods

Constructor

Purpose: creates new FBSJobDesc object. Unless JDF is specified as the constructor’s
argument, the created object is empty (contains no sections).

Synopsis: FBSJobDesc (jdf = None)

Arguments:

e jdf: String - path to JDF. JDF will be read and newly created FBSJobDesc
object will be populated with sections described in the JDF. See Appendix A
for JDF format description. If unspecified, job description will contain no
sections and will have to be populated using addSection method (see below).

Return value: newly created FBSJobDesc object

Exceptions: if JDF file contains syntax or another error, the method generates
SyntaxError exception. In this case, exception value is a 3-tuple:

e Integer line number

e Line text (String)

e Explanation (String)

Examples:
# submit a job using JDF
from FBS API import FBSClient, FBSJobDesc
fc = FBSClient ()
try: Jjob = FBSJobDesc(sys.argv[1l])
except SyntaxError, (lno, line, what):
print ‘Error in JDF %s at line %d: %$s’ % \
(sys.argv[l], lno, what)
print ‘Line: [%s]’ % line
sts, msg = fc.submitJob (job)
if sts:
print ‘Job id = ', msg
else:
print ‘Job submission failed: ', msg

getSection
Purpose: returns description of individual section of the job.

Synopsis: getSection (sname)

Arguments:
e sname: String - name of the section

Return value: FBSSectionDesc object with description of the section

- 35 -



FBSNG API Reference Manual Version 1.5
FBSJobDesc Class

Exceptions: if the job description does not contain specified section, the method
generates KeyError exception.

Examples:
# print all sections of the job
from FBS API import FBSJobDesc
job = FBSJobDesc (‘my.jdf’)
for sn in job.sections():
print job.getSection (sn)

addSection
Purpose: adds new section to the job description.

Synopsis: addSection (section)

Arguments:
e section: FBSSectionDesc object — description of the new section

Return value: none

Exceptions: if the job description already has section with the same name, the
method generates ValueError exception

Examples:
# read job description template and replicate
# section ‘WORK 1’ 3 times
from FBS API import *
fc = FBSClient ()
job = FBSJobDesc (‘my.jdf’)
s = job.getSection(‘WORK 1’) # get template section description
for i in range(3):

sl = s.clone(‘WORK %d’ % i+2) # replicate template section,
# give it new name
job.addSection (sl) # add replicated section
hasSection

Purpose: queries whether the job description contains section with specified name
Synopsis: hasSection (sname)

Arguments:
e sname: String - name of the section

Return value: Integer - 1 if section with specified name exists, 0 otherwise.

Examples:

- 36 -



FBSNG API Reference Manual
FBSJobDesc Class

# add clean-up section from another file if it does
# not exist in JDF template
from FBS API import FBSJobDesc
jtemp = FBSJobDesc (‘template.jdf’)
if not jtemp.hasSection(‘Cleanup’):
jclean = FBSJobDesc (‘clean-up.jdf’)
jtemp.addSection(jclean.getSection (‘Cleanup’)

sections
Purpose: returns names of sections contained in the job description

Synopsis: sections ()

Arguments: none

Return value: List of Strings - list of section names. The list can be empty.

Examples:
# merge descriptions from 2 JDFs
from FBS API import *
job = FBSJobDesc ()
jobl = FBSJobDesc (‘head.jdf’)
job2 FBSJobDesc (‘tail.jdf’")
for sn in jobl.sections():
job.addSection (jobl.getSection (sn))
for sn in job2.sections():
job.addSection (job2.getSection(sn))

validateDependencies
Purpose: validates inter-section dependencies.

Synopsis: validateDependencies ()

__repr__

Version 1.5

Purpose: returns string representation of the job in JDF format. This method is

implicitly called by Python print statement.

Synopsis: repr (job_object)
job. repr ()

Arguments: none
Return value: String with text representation of the job description

Examples:

-37 -



FBSNG API Reference Manual Version 1.5
FBSJobDesc Class

# add clean-up section from another file if it

# does not exist in the template

# then print and save as new JDF

from FBS API import FBSJobDesc

jtemp = FBSJobDesc (‘template.jdf’)

if not Jjtemp.hasSection(‘Cleanup’) :
jclean = FBSJobDesc (‘clean-up.jdf’)
jtemp.addSection (jclean.getSection(‘Cleanup’)

print ‘New JDF:’

print jtemp

f = open(‘new.jdf’,’w’)

f.write (repr (jtemp))

f.close()

Arguments: none

Return value: 2-tuple (status, reason)
e status: Integer - is 1 on success and 0 on failure
e reason: String - on failure, textual explanation of the reason for failure

Examples:
# Read JDF and validate dependencies
from FBS API import *
job = FBSJobDesc (‘my.jdf’)
sts, reason = job.validateDependencies ()
if not sts: print reason

- 38 -



FBSNG API Reference Manual

FBSSectionDesc Class

7

object.

7.1

FBSSectionDesc Class

FBSSectionDesc class contains description of individual job section. Objects of this
class should be used to construct a job from sections by populating FBSJobDesc

Data Members

FBSSectionDesc object contains complete job section description. The following data
members should be used to describe the section:

FBSSectionDesc Data Members

Version 1.5

|Name

Type Default Description
Name String (required) Section name
ProcType String Queue default [Process type
HoldTime Date/time |None Hold-until time, or None, or -1 for hold-
or String forever. String representation of the
date/time is also acceptable.
PerProcRsrc [Dict {} Local and global resources consumed by each
process
PerSectRsrc  |Dict {} Global resources consumed by the section
Queue String (required) Queue name
NProc Int 1{Number of processes
Nice Int O|Run-time nice parameter
Priolnc Int O|Initial section priority relative to normal initial
priority.
Need 0/1 O|NEED field
LeaderOnly |0/1 O|LEADER_ONLY field
Exec List of (required) User command
Strings
MailTo String None E-mail address for section log
Depend String None Section dependencies specification
SectOutput  [String None Template for section log output file name
Stderr String FBS_%:j.%n.out |Template for process stderr file names
Stdout String FBS_%j.%n.err [Template for process stdout file names
OnNodes List of None (= on all |Lists nodes processes of the section are
Strings available nodes)|allowed to start on

Exec field of FBSSectionDesc structure represents the command to be executed by
each process of the section. The command can be specified either as a string or as
list of strings. List of strings should be used if some words of the command contain
spaces or other special characters.

For example, the following two fragments of code produce the same result:

-39 -




FBSNG API Reference Manual Version 1.5
FBSSectionDesc Class

s = FBSSectionDesc (‘run’)
s.Exec = “/bin/echo Hello”
s.Exec = [“/bin/echo”,”Hello”]

In more complicated cases like the following, it is necessary to represent the
command as a list:

s.Exec = [“su”,”theuser”,”-c”,”/bin/echo Hello”]

7.2 Methods

Constructor

Purpose: creates a new FBSSectionDesc object. The constructor can be used to set
section parameters. In addition, the parameters can be modified later using direct
assignment of new values to the object fields.

Synopsis: FBSSectionDesc (name, override={}, keyword=value, ..)

Arguments:

e name: String - section name. Note that no two sections of the same job
should have the same name.

e override: Dictionary = {} - optional parameter which can be used to assign
values to parameters at construction time. Value of this parameter must be a
dictionary with class field names as string keys and values as values.

¢ keyword arguments. Each keyword=value pair will be used to assign specified
value to corresponding data member. Only class data member names are
accepted as keywords.

Using override dictionary and keyword arguments produces the same results. These
two methods can be used interchangeably or even in the same call to the
constructor. If the same parameter is present both in override dictionary and as
keyword argument, value of the later will be assigned. User can change any field
value later assigning values directly to object fields.

Return value: newly created FBSSectionDesc object

- 40 -



FBSNG API Reference Manual
FBSSectionDesc Class

Examples:

Version 1.5

# Create 4 exact copies of a section using different methods.

# First, using only keyword arguments
from FBS API import *

sdl = FBSSectionDesc (‘*WORK', # section name
Exec='/bin/sleep 10’, # Exec field
Need=1, # Need field
Nice=5, # Nice field
Queue = ‘WorkerQueue’, # Queue field
LeaderOnly = 1, # LeaderOnly flag
NProc = 5) # Number of processes

# Second, using only override dictionary.
# Note that field names are represented as strings.
sd2 = FBSSectionDesc (‘WORK’, # section name

override = {
‘Exec’ :’ /bin/sleep 10’, #
‘Need'’ : 1, #
‘Nice'’ :5, #
‘Queue’ : ‘“WorkerQueue’, #
‘LeaderOnly’ :1, #
‘NProc’ :5} #
)
# Third, using both methods.
sd3 = FBSSectionDesc (‘WORK’, #
override = { #
‘Nice’ :5, #
‘Queue’ : ‘WorkerQueue’, #
‘LeaderOnly’ :1, #
‘Need’ : 0
by
#
Exec='/bin/sleep 10’, #
Need=1, #
#
#
#
NProc = 5) #

Exec field

Need field

Nice field

Queue field
LeaderOnly flag
Number of processes

section name
override dictionary
Nice field

Queue field
LeaderOnly flag

keyword arguments:

Exec field

Need field. Note that this field
is mentined in override
dictionary too. In this case,
Need will be set to 1.

Number of processes

# and now create another copy accessing object data

# members directly

sd4 = FBSSectionDesc (‘WORK’) # Set only section name
# then set each field directly

sd4 .Exec='/bin/sleep 10’
sd4 .Need=1

sd4 .Nice=5

sd4 .Queue=‘WorkerQueue’
sd4.LeaderOnly=1

sd4 .NProc=5

clone

Purpose: make copy of existing section description,

parameters.

- 41 -

optionally modifying some



FBSNG API Reference Manual Version 1.5
FBSSectionDesc Class

Synopsis: clone (name, override={}, keyword=value, ..)

Arguments:
e name: String - section name for the copy
e override: Dictionary = {} - same as for constructor
e keyword parameters, same as for constructor
This method has the same arguments with the same meaning as the constructor.

Return value: newly created section description object

Examples:
# Read JDF and replicate WORK A section 7 times modifying
# some parameters
from FBS API import *
job = FBSJobDesc (‘template.jdf’)
s = job.getSection (‘WORK A')
for suffix in ‘BCDEFGH’ :

sl = s.clone(‘WORK %s’ % suffix, # change name
# and Exec field
Exec = s.Exec + (' /scratch/%$s.dat’ % suffix))
job.addSection (sl) # add new section to the job
s.Exec = s.Exec + ' /scratch/A.dat’

# submit the job
print FBSClient () .submitJob (job)

__repr__
Purpose: produces text representation of the section in JDF format. This method is
implicitly used by Python ‘print’ statement.

Synopsis: repr (section)
section. repr ()

Arguments: none
Return value: text representation of the section.
Examples:

# Create a section description and print it
from FBS API import FBSSectionDesc

s = FBSSectionDesc(‘Start’, Queue=’LongQ’,
Exec='/bin/process-data.sh XYz123',
NProc=5,

PerProcRsrc={‘scratch’:5, ‘tape’:1})

print s

this fragment of code will print:
SECTION Start
EXEC = /bin/process-data.sh XY7123
NUMPROC = 5
PROC RESOURCES = scratch:5 tape:l

-42 -



FBSNG API Reference Manual Version 1.5
FBSJobInfo Class

8 FBSJoblInfo Class

Objects of this class represent information about batch jobs returned from FBSNG.
They are generated by getJob method of FBSClient class. API users should not create
FBSJobInfo objects. That is why constructor for this class is not documented.

8.1 Data Members

FBSJobInfo class has data members listed in the following table. All data members
are “read-only” members. Any modifications of their values will be ignored.

FBSJobInfo Data Members

|Name Type Description

ID String Job ID

UID Int UNIX user ID of the job owner
GID Int UNIX group ID of the job owner
State String Job state: “active” or “done”
Username |String UNIX user name

8.2 Methods

sections
Purpose: returns list of names of job sections

Synopsis: sections ()
Arguments: none
Return value: List of Strings - list of job section names

Examples: see example for getSection

getSection
Purpose: returns information about individual job section.

Synopsis: getSection (sname)

Arguments:
e snhame: String - section name

Return value: FBSSectionInfo object with information about the section

Exceptions: if the job does not have specified section, or the job itself no longer
exists, the method generates KeyError exception.

-43 -



FBSNG API Reference Manual Version 1.5
FBSJobInfo Class

Examples:
# List IDs of all sections of all jobs submitted by the user
from FBS API import FBSClient
fc=FBSClient ()
for jid in fc.getJobList (uid=os.getuid()) :
3 = fc.getdJob(jid)
for sn in j.sections():
s = j.getSection(sn)
print s.ID

kill
Purpose: sends request to kill the job, if the job is running, or cancel, if it is still
pending. Only job owner can kill the job.

Synopsis: kill (now=0)

Arguments:
e now: Integer - if now=1, all processes of the job will be terminated
immediately with SIGKILL signal. Otherwise, by default, SIGINT will be sent
to all processes, and then, after grace period of time, SIGKILL will be sent.

Return value: 2-tuple (status, reason)
e status: Integer - is 1 on success and 0 on failure
e reason: String - on failure, textual explanation of the reason for failure

Exceptions: if the job no longer exists, the method generates KeyError exception.
Examples:
# Kill all jobs owned by members of the user’s group:
from FBS API import FBSClient
fc = FBSClient ()
for jid in fc.getJoblist (gid=os.getgid()):
sts, reason = fc.getdJob(jid) .kill ()

if not sts:
print ‘Can not kill job #%s: %$s’ % (jid, reason)

refresh
Purpose: update an object’s data members with current information

Synopsis: refresh ()
Arguments: none
Return value: none

Exceptions: if the job no longer exists, the method generates KeyError exception.

-44 -



FBSNG API Reference Manual Version 1.5
FBSJobInfo Class

Examples:
# Wait for completion of a job
from FBS API import *
fc=FBSClient ()
j=fc.getJob ('1234")
while j.State == ‘active’:
time.sleep (10) # sleep, and then refresh
try: J.refresh(()
except KeyError:
break # job disappeared, it’s done

- 45 -



FBSNG API Reference Manual Version 1.5
FBSSectionInfo Class

9 FBSSectioninfo Class

Objects of FBSSectionInfo class contain information about FBSNG job sections. They
are created by other FBSNG API objects such as FBSClient and FBSJobInfo. API
clients should not create objects of FBSSectionInfo class. That is why its constructor
is not documented.

9.1 Data Members

Data members of FBSSectionInfo class are listed in the table below. All data
members are “read-only” in the sense that any modifications of their values will be
ignored.

FBSSectionInfo Data Members

Name Type Description

1D String Section ID

JobID String Job ID

Name String Section name
ProcType String Process type
SubTime Date/time Submission date/time

HoldTime Date/time  |Hold-until time, or None, or -1 for hold-forever
StartTime Date/time Start time, or None

EndTime Date/time End time, or None

PerProcRsrc  |Dict Local and global resources consumed by each process

PerSectRsrc  |Dict Global resources consumed by the section

RsrcPoolDict |Dict Dictionary translating requested resource pool hames
into names of actually allocated resources

Queue String Queue name

Prio Int Section priority. Modified by Scheduler.

UID Int User id

GID Int Group id

Username String Username

NProc Int Number of processes

ProcStats Dictionary  [The dictionary is indexed with process number (1...NProc)

Int -> String [and maps logical process id to process’ state
(“running”,"exited”,"pending”)

Nice Int Run-time nice parameter

Priolnc Int Section scheduling priority increase (decrease)
accumulated so far.

See incPrio method

Exec String User command

Need 0/1 NEED parameter

LeaderOnly |0/1 LEADER_ONLY parameter
CPUTimeLimit [Int CPU time limit in seconds
RealTimeLimit|Int Real time limit in seconds
SectOutput  |String Template for section log output
Stderr String Template for process stderr files

- 46 -



FBSNG API Reference Manual Version 1.5
FBSSectionInfo Class

Name Type Description

Stdout String Template for process stdout files

ExitCode Int Exit status for exited sections, otherwise None
Depend String Dependencies

JDFSeq Int The number of the section in JDF file, or sequence

number of call to FBSJobDesc.addSection() the section
was added to the job.

State String Section state (waiting, ready, running, done,
exited, canceled, zombie)
OnNodes List of Strings|List of nodes the section is allowed to run on, or None if
or None no restrictions.

9.2 Methods

getProcess
Purpose: returns information about individual section process.

Synopsis: getProcess (proc_no, local details = 1)

Arguments:
e proc_no: Integer - logical process ID
e local_details: Integer - optional argument, if local_details is 1 (default), all
available information about the process will be returned. Otherwise, if
local_details is 0, some returned information may be inaccurate or not up-to-
date, but the method will work faster. See description of FBSProcessInfo
(page 51) for more information.

Return value: FBSProcessInfo object with information about the process

Exceptions: if the section no longer exists, or does not have a process with specified
logical process ID, the method generates KeyError exception.

Examples:

# print node names where the section processes are running

from FBS API import FBSClient

fc=FBSClient ()

si=fc.getSection (‘1234.MAIN’) # get section information

for i in range(si.NProc):
pi = si.getProcess(i+l) # logical PIDs run from 1 to NProc
print pi.Node

isHeld

Purpose: returns 1 if the section is held, 0 otherwise. Section is considered held if:
e Itis in state “waiting” and
e Its HoldTime is not None and it is in future or -1.

Synopsis: isHeld ()

-47 -



FBSNG API Reference Manual Version 1.5
FBSSectionInfo Class

Arguments: none
Return value: Integer - 1 if the section is held, 0 otherwise

Exceptions: if the section no longer exists, the method generates KeyError
exception.

Examples:
# release all held sections of the job
from FBS API import FBSClient
fc=FBSClient ()
J=fc.getJob ('1234")
for sn in j.sections():
s = j.getSection(sn)
if s.isHeld(): s.release ()

hold

Purpose: holds the section either indefinitely, or until the specified time
Synopsis: hold (hold time = -1)

Arguments: hold_time: String or Time - time after which the section should be
released. The time can be specified in the following forms:

e string representation (see “Hold Time Specification” section)

e as value returned by time.localtime()

e -1 will hold the section indefinitely. This is default.

Return value: 2-tuple (status, reason)
e status: Integer - is 1 on success and 0 on failure
e reason: String - on failure, textual explanation of the reason for failure

Exceptions: if the section no longer exists, the method generates KeyError
exception.

Examples:
# hold section by ID
from FBS API import *
fc = FBSClient ()
si = fc.getSection(sys.argv[1l])
if len(argv) > 2:
# user specified hold time
si.hold(sys.argv[2])
else:
# hold forever
si.hold()

release
Purpose: releases previously held section

Synopsis: release ()

- 48 -



FBSNG API Reference Manual Version 1.5
FBSSectionInfo Class

Arguments: none

Return value: 2-tuple (status, reason)
e status: Integer - is 1 on success and 0 on failure
e reason: String - on failure, textual explanation of the reason for failure

Exceptions: if the section no longer exists, the method generates KeyError
exception.

Examples:
# release all held sections of the job
from FBS API import FBSClient
fc=FBSClient ()
j=fc.getJob ('1234")
for sn in j.sections():

s = j.getSection(sn)
if s.isHeld() :
sts, reason = s.release()

if not sts:
print ‘Release %s: %s’ % (sn, reason)

incPrio
Purpose: increases or decreases priority of a pending section. If the section is not
pending, priority change does not have any effect.

Synopsis: incPrio (increment)

Arguments:
e increment: Integer - desired priority increment, or decrement if negative.

Return value: 2-tuple (status, reason)
e status: Integer - is 1 on success and 0 on failure
e reason: String - on failure, textual explanation of the reason for failure

Examples:
# increment priority of all ready sections of a job
from FBS API import *
fc=FBSClient ()
Jji=fc.getJob ('1234")
for sn in ji.sections():
si=ji.getSection()
if si.State == ‘ready’: si.incPrio (1)

Exceptions: if the section no longer exists, the method generates KeyError
exception.

kill

Purpose: sends request to kill the section

Synopsis: kill (now=0)

- 49 -



FBSNG API Reference Manual Version 1.5
FBSSectionInfo Class

Arguments:
e now: Integer - optional argument, if now=1, SIGKILL signal will be sent to all
running processes of the section, otherwise, or if unspecified, SIGINT will be
sent, and later SIGKILL.

Return value: 2-tuple (status, reason)
e status: Integer - is 1 on success and 0 on failure
e reason: String - on failure, textual explanation of the reason for failure

Exceptions: if the section no longer exists, the method generates KeyError
exception.

Examples:
# kill immediately all sections of the Jjob running on
# particular node
from FBS API import *
fc=FBSClient ()
ji=fc.getJob ('1234")
for sn in ji.sections():
si=ji.getSection(sn)
if si.State == ‘running’:
for 1 in range(si.NProc):
pi = si.getProcess (i+1l)
if pi.State == ‘running’ and \
pi.Node == ‘pcl23’:
si.kill (1) # kill it immediately

refresh
Purpose: update object’'s data members with current information

Synopsis: refresh ()
Arguments: none
Return value: none

Exceptions: if the section no longer exists, the method generates KeyError
exception.

Examples:

# wait for section to complete and print its exit code
from FBS API import FBSClient
fc=FBSClient ()
si=fc.getSection (‘1234 .MAIN’)
while si.State != ‘done’:

time.sleep (30)

try: si.refresh{()

except KeyError:

print ‘Section exited with unknown exit code’

print ‘Exit code is ', si.ExitCode

- 50 -



FBSNG API Reference Manual Version 1.5
FBSProcessInfo Class

10 FBSProcessinfo Class

This class is used to return information about the main batch process (the process
which executes the command specified in job description) and the tree of its
subprocesses. Objects of this class are returned by getProcess methods of FBSClient
and FBSSectionInfo classes. API clients should not create objects of this class. That
is why its constructor is left undocumented.

10.1 Data Members

FBSProcessInfo class has the following data members.

FBSProcessInfo Data Members

[Name Type Description

BPID String FBS process id "jobid.sectname.procno"

UPID Int Unix process id

Node String Node name where the process is/was
running

Status String Process state: initial, running, exited

Command String Command being executed

RsrcPoolDict Dict[String]=String Dictionary translating requested

resource pool hames
into names of actually allocated

resources

CPUTime(*) Int Accumulated CPU time of the main
process

ACPUTime(*) Int Accumulated CPU time including all
running
and exited subprocesses

StartTime Time Process start time

ExitTime Time Exit time

ExitCode Int Process exit status

Core 0/1 Whether core was dumped

Signal Int Signal number if process was
terminated
by non-caught signal

Message(**) String Message sent with "fbs msg" command

Subprocesses(**) |List of FBSSubProcessInfo|List of objects representing

objects subprocesses of

the root process

Data members marked with (*) are more accurate for running processes if
local_details parameter of the call to getProcess used to create this object, or refresh
method of the object was set to 1.

Data members marked with (**) are returned only for running processes, and only if
local_details parameter of the call to getProcess or refresh method was non-zero.

All data members of this class are “read-only” in the sense that any modifications of
their value have no effect on actual batch process and will be ignored.

-51 -



FBSNG API Reference Manual Version 1.5
FBSProcessInfo Class

10.2 Methods

refresh
Purpose: update the object’s data members with current information

Synopsis: refresh(local details=1)

Arguments:

e local_details: Integer - optional argument, if local_details=1 (default), all
available information about the process will be returned. Otherwise, if
local_details=0, some returned information may be inaccurate, but the
method will work faster. See description of FBSProcessInfo for details.

Return value: none

Exceptions: if the process no longer exists, the method generates KeyError
exception.

Examples:
# wait for a process to complete and print its exit code
# and accumulated CPU time
from FBS API import FBSClient
fc=FBSClient ()
pi=fc.getProcess (‘'1234.MAIN.1") # get process by batch PID
while pi.Status != ‘exited’:
time.sleep (30)
try: pi.refresh{()
except KeyError:
print ‘Process disappeared’ # need to poll
# more often
break
print ‘Exit code is ', pi.ExitCode, ' CPU time ', pi.ACPUTime

-52-



FBSNG API Reference Manual Version 1.5
FBSSubProcessInfo Class

11 FBSSubProcessinfo Class

FBSSubProcessiInfo class is used to represent sub-processes of the root batch
process. FBSProcessInfo object and referenced FBSSubProcessIinfo objects represent
tree of processes started by the root process.

11.1 Data Members

FBSSubProcesslInfo class has the following data members:

FBSSubProcessInfo Data Members

Name Type Description

UPID Int Unix process ID

Command String Command being executed

CPUTime Int Accumulated CPU time for this process

ACPUTime Int Accumulated CPU time including subprocesses

Subprocesses  |List of FBSSubprocessInfo |List of objects representing subprocesses of
Objects this process

All data members of this class are “read-only” in the sense that any modifications of
their value have no effect on actual batch process, and will be ignored.

12 FBSNodeClassInfo Class

This class represents information about a node class. Objects of this class are
created by getNodeClass method of FBSClient class. API clients should not create
objects of this class other than by calling this method. That is why constructor of this
class is left undocumented.

12.1 Data Members

FBSNodeClassInfo has the following data members:
FBSNodeClassInfo Data Members

Name Type Description

Name String Name of the node class

Nodes List of Strings List of node names

ResourceCap |Dictionary Resource capacity per node

LocalDisks Dictionary Resource name — to — root directory mapping for local
scratch disks

Power Floating point number{Relative power of the nodes of the class

All data members of this class are “read-only” in the sense that any modifications of
their value have no effect on actual farm configuration, and will be ignored.

- 53 -



FBSNG API Reference Manual Version 1.5
FBSNodeClassInfo Class

12.2 Methods

refresh
Purpose: updates object’s data members with current information.

Synopsis: refresh ()

Arguments: none

Return value: none

Examples:
# periodically, print how many nodes of class Worker are down
from FBS API import *

fc=FBSClient ()
ci = fc.getNodeClass (‘Worker’)

while 1:
ci.refresh() # in case configuration has changed
ndown = 0

for node in ci.Nodes:
if not fc.getNode (node) .IsUp:
ndown = ndown + 1
print time.ctime(time.time()), ndown
time.sleep (60)

setRsrcCap

Purpose: sets resource capacity for all nodes of the class. This method should be
used to introduce new local resources to the farm configuration. On success, this
method updates ResourceCap data member with new values.

Synopsis: setRsrcCap (rsrc_dict)

Arguments:

e rsrc_dict: Dictionary - dictionary describing resource capacity for each node
of the class. Resource nhames must be the dictionary keys, and capacity must
be specified as dictionary values. For node attributes, values must be None.
Resource names listed in this dictionary must be names of either new or
existing local resources or node attributes. Global resource or resource pool
names are not allowed.

Return value: 2-tuple (status, text)
e status: Integer - is 1 on success and 0 on failure
e text: String - the job id on success, or textual explanation of the reason for
failure

-54 -



FBSNG API Reference Manual Version 1.5
FBSNodeClassInfo Class

Example:
# set resource capacity for a node class
from FBS API import *
fc = FBSClient ()
nc = fc.getNodeClass (‘MCWorkers’)
# set capacity:

# cpu: 100 units
# disk: 18 units
# attributes: Linux, Worker, MC

nc.setRsrcCap ({ ‘cpu’:100,’disk’ :18,"Linux’ :None,
‘Worker’ :None, ‘MC’ :None})

setLocalDisks

Purpose: sets new resource name — to — local scratch disk location mapping for
nodes of the class. On success, this method updates LocalDisks data member with
new values. After modifying the disk scratch mapping, administrator must re-start
Launchers on all nodes of the class.

Synopsis: setLocalDisks (disks)

Arguments:
e disks: Dictionary — maps local resource names representing scratch disks on
farm nodes of the class to the root directory of the scratch area.

Return value: 2-tuple (status, text)
e status: Integer - is 1 on success and 0 on failure
e text: String - the job id on success, or textual explanation of the reason for
failure

Example:
# add new scratch disk on nodes of the class
from FBS API import *
fc = FBSClient ()
nc = fc.getNodeClass (‘MCWorkers’)
dict = nc.LocalDisks
dict[‘scratch2’] = ‘/stage2/scratch’
nc.setLocalDisks (dict)

addNode

Purpose: adds a new node to the node class and to the farm. Initially, new nodes are
created in held/down state. New nodes should be released later using appropriate
methods of FBSClient or FBSNodelnfo classes.

Synopsis: addNode (name)
Arguments:
e name: String - name of new node. The node must not belong to any existing
node class.

Return value: 2-tuple (status, text)
e status: Integer - is 1 on success and 0 on failure

- 55 -



FBSNG API Reference Manual Version 1.5
FBSNodeClassInfo Class

e text: String - the job id on success, or textual explanation of the reason for
failure

Example:
# add 5 new nodes to ‘Streaml’ node class

from FBS API import FBSClient

fc = FBSClient ()

nc = fc.getNodeClass (‘Streaml’)

for suffix in [‘a’,’'b’,’'c’,’'d" ,’e"]:
name = ‘fnpc%s’ % suffix
nc.addNode (name)
fc.releaseNode (name)

removeNode

Purpose: removes a node from a node class. This operation can be performed only if
no batch processes are running on the node. Combination of removeNode and
addNode methods should be used to move a node from one node class to another.

Synopsis: removeNode (name)

Arguments:
e name: String - name of the node to remove

Return value: 2-tuple (status, text)
e status: Integer - is 1 on success and 0 on failure
e text: String - the job id on success, or textual explanation of the reason for

failure

Example:

# move 5 nodes from one node class to another

from FBS API import FBSClient

fc = FBSClient ()

ncl = fc.getNodeClass(‘'Streaml’)

nc2 = fc.getNodeClass (‘Stream2’)

for suffix in [‘a’,’b’,’'c’,"'d",’
name = ‘fnpc%s’ % suffix
ncl.removeNode (name)
nc?2.addNode (name)
fc.releaseNode (name)

e’]:

- 56 -



FBSNG API Reference Manual Version 1.5
FBSNodelInfo Class

13 FBSNodelnfo Class

This class represents information about individual farm node. Objects of this class
are created by the getNode method of FBSClient class, and should not be created by
API clients. That is why constructor of this class is undocumented.

13.1 Data Members

The class has the following data members:
FBSNodeInfo Data Members

Name Type Description

Name String Node name

Class String Node class

IsHeld Int Node is held (1) or not (0)

IsUp Int Node is up (1) or not (0)

HoldReason |String Reason for being held

Resources |Dictionary Dictionary indexed by resource names with 2-tuples
dict[rsrc_name]= as values. In each tuple, first element is integer number
(usage, capacity) representing current resource utilization, and second is

resource capacity on empty node.
Processes List of Strings List of BPIDs of processes running on the node.

All data members of this class are “read-only” in the sense that any modifications of
their value have no effect on actual farm configuration or state of the node, and will
be ignored.

13.2 Methods

refresh
Purpose: updates object’s data members with current information.

Synopsis: refresh ()
Arguments: none

Return value: none

-57 -



FBSNG API Reference Manual Version 1.5
FBSNodelInfo Class

Examples:
# periodically, print resource utilization statistics
# for IOl node
from FBS API import FBSClient
fc=FBSClient ()
ni = fc.getNode (“I01”)
while 1:
ni.refresh ()
if not ni.IsUp:
print ‘--Node is down’
elif ni.IsHeld:
print ‘--Node is held: ', ni.HoldReason
else:
for rn in ni.Resources.keys():
usage, cap = ni.Resources|[rn]
print ‘Resource %s: used %d out of %d’ %\
(rn, usage, cap)
time.sleep (60)

- 58 -



FBSNG API Reference Manual Version 1.5
FBSQueuelnfo Class

14 FBSAQueuelnfo Class

This class represents information about an individual FBSNG queue. Objects of this
class are created by the getQueue method of FBSClient class, and should not be
created by API clients. That is why constructor of this class is undocumented.

14.1 Data Members

This class has the following data members:
FBSQueuelInfo Data Members

Name Type Description

Name String Queue name

DefProcType |String Default process type

IsLocked Int 1 if the queue is locked, 0 if not

IsHeld Int 1 if the queue is held, 0 if not

Sections List of Strings |List of section ids ordered according to scheduling

algorithm. First section will be scheduled first.

SectState Dict[sectid]= |Section state dictionary indexed by section id.
String

SectPrio Dict[sectid]= |Section priority dictionary indexed by section id.
Int

Npending Int Number of pending (waiting or ready) sections in

the queue.

Nrunning Int Number of running sections in the queue.

MaxSPrio Int Maximum section priority for this queue.

SPGap Int Section priority gap.

MaxQPrio Int Maximum priority of this queue.

MinQPrio Int Minimum priority of this queue.

Prio Int Current priority of this queue.

QPDec Int Queue priority decrement.

QPGap Int Queue priority gap for this queue.

Users List of Strings |List of users allowed to use the queue.

ProcTypes  |List of Strings |List of process types allowed in the queue.

CPUTimeLimit|Int Process CPU time limit in seconds or —1 if no limit

RealTimeLimit/Int Process elapsed time limit in seconds or —1 if no limit

All data members of this class are “read-only” in the sense that any modifications of
their value have no effect on actual farm configuration or state of the queue, and will
be ignored until update method is called.

14.2 Methods

hold

Purpose: holds the queue temporarily preventing new sections waiting in this queue
from starting.

Synopsis: hold()

- 590 -



FBSNG API Reference Manual Version 1.5
FBSQueuelnfo Class

Arguments: none

Return value: 2-tuple (status, reason)
e status: Integer - is 1 on success and 0 on failure
e reason: String - on failure, textual explanation of the reason for failure

Examples:
# hold all FBSNG queues
from FBS API import FBSClient
fc=FBSClient ()
for gn in fc.getQueuelist () :
g = fc.getQueue (gn)
sts, reason = g.hold()
if not sts:
print ‘Can not hold queue <%s>: %$s’ % (gn, reason)

release
Purpose: releases previously held queue

Synopsis: release ()
Arguments: none

Return value: 2-tuple (status, reason)
e status: Integer - is 1 on success and 0 on failure
e reason: String - on failure, textual explanation of the reason for failure

Examples:
# release all empty queues
from FBS API import *
fc=FBSClient ()
for gn in fc.getQueuelist():
g = fc.getQueue (gn)
if g.Sections:
# queue is not empty: print list of sections
# and skip it

print ‘Queue <%s> is not empty: ‘ % gn, \
string.join(g.Sections)
continue

sts, reason = g.release()
if not sts:
print ‘Can not release gqueue <%s>: %s’ % (gn, reason)

lock
Purpose: lock the queue: disable new sections submission into this queue

Synopsis: lock ()
Arguments: none

Return value: 2-tuple (status, reason)

- 60 -



FBSNG API Reference Manual Version 1.5
FBSQueuelnfo Class

e status: Integer - is 1 on success and 0 on failure
e reason: String - on failure, textual explanation of the reason for failure

Examples:
# lock all queues with default process type “Worker”
from FBS API import FBSClient
fc=FBSClient ()
for gn in fc.getQueuelist () :
g = fc.getQueue (gn)
if g.DefProcType == ‘Worker’:
sts, reason = g.lock()
if not sts:
print ‘Can not lock queue <%s>: %s’ % \
(gqn, reason)

unlock
Purpose: unlock the queue

Synopsis: unlock ()
Arguments: none

Return value: 2-tuple (status, reason)
e status: Integer - is 1 on success and 0 on failure
e reason: String - on failure, textual explanation of the reason for failure

Examples:
# unlock all queues and make sure they are not held
from FBS API import *
fc=FBSClient ()
for gn in fc.getQueuelist():
g = fc.getQueue (gn)
sts, reason = g.unlock()
if not sts:
print ‘Can not unlock <%s>: %s’ % (gn, reason)
continue
if g.IsHeld:
g.release()

update

Purpose: updates queue parameters with values of the following object’s data
members:

o QPGap
QPInc
QPDec
MaxQPrio
MinQPrio
MaxSPrio (u)
MinSPrio (u)
SPGap (u)
Prio
DefProcType

-61 -



FBSNG API Reference Manual
FBSQueuelnfo Class

e RealTimeLimit
e CPUTimeLimit
e Users

e ProcTypes

Version 1.5

On success, the method updates the object’s data members with new values. Fields
marked with (u) can be modified by an authorized user (listed in Users). Other fields

can be modified only by FBSNG administrator.

Synopsis: update ()
Arguments: none

Return value: 2-tuple (status, text)

e status: Integer - is 1 on success and 0 on failure
o text: String -textual explanation of the reason for failure

Example:

# create new queue and set its parameters,

# then unlock the queue
from FBS API import *
fc = FBSClient ()

sts, reason = fc.createQueue (‘LongQ’)

if not sts:

print ‘Can not create queue:

else:

gi = fc.getQueue (‘LongQ’)

qgi.QPDec = 5

gi.MaxQPrio = 1000

gi.QPGap = 15
gi.CPUTimelLimit =
gi.MaxSPrio = 100
qi.update ()
gi.unlock ()

print ‘Done.’

refresh

Purpose: updates object’s data members with current information.

Synopsis: refresh ()
Arguments: none

Return value: none

None

-62 -

# unlimited



FBSNG API Reference Manual Version 1.5
FBSQueuelnfo Class

Examples:

# drain a queue:

# lock FastQ queue then wait until it’s empty.

from FBS API import FBSClient

fc=FBSClient ()

g = fc.getQueue (‘FastQ’)

g.lock ()

while g.Sections:
# stil not empty, print numbers, then
# sleep for a minute and check again
print ‘pending: %d, running: %d, total: %d’ %\

(g.NPending, g.NRunning, len(g.Sections))

time.sleep (60)
g.refresh()

# now it is empty.

- 63 -



FBSNG API Reference Manual Version 1.5
FBSProcTypelnfo Class

15 FBSProcTypeilnfo Class

The FBSProcTypelnfo class is used to represent configuration and resource utilization
information for FBSNG process types. Objects of this class are created by the
getProcessType method of FBSClient class, and should not be created by API clients.
That is why constructor of this class is undocumented.

15.1 Data Members

FBSProcTypelnfo class has the following data members:

FBSProcTypelInfo Data Members

Name Type Description
Name String Name of the process type
MaxPriolnc Int Maximum allowed priority increment or None
RsrcQuota Dict Process type quota for resource usage
RsrcUsage Dict Amount of resources currently used by processes
of this type
ProcRsrsDefaults |Dict Default resource utilization per process
SectRsrsDefaults |Dict Default resource utilization per section
Users List of Strings|List of users allowed to use the process type
NodesAllow List of Strings|List of nodes processes of this type are allowed to run on

NodesDisallow List of Strings|List of nodes processes of this type are disallowed to run on

MaxNodeCount |Int or None |Maximum number of different nodes the processes of this type
are allowed to run on at any time. None means no limit.

CurrentNodeCount|Int Number of nodes processes of the type are currently
running on

RealTimeLimit Int Maximum allowed process elapsed time in seconds.
—1 means no limit.

CPUTimeLimit Int Maximum allowed process CPU time in seconds.
—1 means no limit.

MinNice Int Minimal NICE factor for processes of this type

All data members of this class are “read-only” in the sense that any modifications of
their value have no effect on actual farm configuration or state of the queue, and will
be ignored.

Users data member is contains list of users allowed to use the process type. If the
list contains “*” string, the rest of the list is ignored, and all users are permitted to
use the process type.

NodesAllow and NodesDisallow members can be used by authorized users (those
listed in Users) or FBSNG administrator to control which nodes can be chosen to start
batch processes on. If any of the two lists contains wild card string “*”, the rest of
the list is ignored, and all the nodes are considered as included in the list. FBSNG
uses the following algorithm to decide whether a process of the process type can
start on a particular node:

e If NodesDisallow contains “*”, then the node is allowed only if NodesAllow
contains the name of the node

-64 -



FBSNG API Reference Manual Version 1.5
FBSProcTypelnfo Class

e Else, if NodesAllow contains “*”, then the node is allowed only if it is not listed
in NodesDisallow

e Else, if neither list contains “*”, the node is allowed if it is listed in NodesAllow
but not in NodesDisallow

As you can see, ambiguities like both lists contain “*”, or the name of the node is
present in both list are always resolved by not allowing the node.

Note that this mechanism does not supersede FBSNG node selection algorithms.
NodesAllowe and NodesDisallow can be used only in addition to regular resource
management algorithms described in FBSNG Resources document.

15.2 Methods

setSectRsrcDefs
Purpose: sets new default section resource requirements

Synopsis: setSectRsrcDefs (rsrc dict)

Arguments:
e rsrc_dict: Dictionary - dictionary describing section default resource
requirements for sections of the process type. Resource names must be the
dictionary keys, and the requirements must be specified as dictionary values.

Return value: 2-tuple (status, text)
e status: Integer - is 1 on success and 0 on failure
o text: String - the job id on success, or textual explanation of the reason for
failure

Example:
# create new process type and specify quotas and default
# resource requirements and maximum allowed priority
# increment
from FBS API import FBSClient
fc = FBSClient ()

sts, reason = fc.createProcessType (‘NewWorker’)
if not sts:

print ‘Can not create process type: ', reason
else:

pt = fc.getProcessType (‘NewWorker’)
pt.setProcRsrcDefs ({ ‘cpu’ :100,’'Linux’ :None})
pt.setSectRsrcDefs ({ ‘nfs _disk’:3})
pt.setRsrcQuota ({‘cpu’:10000, " nfs disk’:21})
pt.setMaxPrioInc (10)

setProcRsrcDefs
Purpose: sets new default process resource requirements.

Synopsis: setProcRsrcDefs (rsrc_dict)

- 65 -



FBSNG API Reference Manual Version 1.5
FBSProcTypelnfo Class

Arguments:

e rsrc_dict: Dictionary - dictionary describing process default resource
requirements for the process type. Resource names must be the dictionary
keys, and the requirements must be specified as dictionary values. For node
attributes, value must be None.

Return value: 2-tuple (status, text)
e status: Integer - is 1 on success and 0 on failure
e text: String - the job id on success, or textual explanation of the reason for
failure

Example: (see the example for setSectRsrcDefs)

setRsrcQuota
Purpose: sets new resource utilization quota for the process type

Synopsis: setRsrcQuota (rsrc_dict)

Arguments:

e rsrc_dict: Dictionary - dictionary describing resource allocation quotas for the
process type. Resource names must be the dictionary keys, and the
requirements must be specified as dictionary values. If a resource is not
present in the dictionary, the process type will be able to use unlimited
amount of the resource.

Return value: 2-tuple (status, text)
e status: Integer - is 1 on success and 0 on failure
o text: String -textual explanation of the reason for failure

Example: (see the example for setSectRsrcDefs)

setMaxPriolnc
Purpose: sets new maximum priority increment for sections of the process type.

Synopsis: setMaxPrioInc (new max)
Arguments:
e new_max: Integer or None - new value of the maximum. None allows
unlimited priority increments.
Return value: 2-tuple (status, text)
e status: Integer - is 1 on success and 0 on failure
e text: String -textual explanation of the reason for failure

Example: (see the example for setSectRsrcDefs)

setMaxNodeCount

Purpose: sets new maximum number of nodes processes of the type are allowed to
run on.

- 66 -



FBSNG API Reference Manual Version 1.5
FBSProcTypelnfo Class

Synopsis: setMaxNodeCount (new max)
Arguments:
¢ new_max: Integer or None - new value of the maximum. None means no
limit.

Return value: 2-tuple (status, text)
e status: Integer - is 1 on success and 0 on failure
o text: String -textual explanation of the reason for failure

setCPUTimeLimitt

Purpose: sets new process CPU time limit.
Synopsis: setCPUTimelimit (new max)

Arguments:
e new_max: Integer - new CPU time limit in seconds. -1 means no limit.

Return value: 2-tuple (status, text)

e status: Integer - is 1 on success and 0 on failure
o text: String -textual explanation of the reason for failure

setRealTimeLimitt
Purpose: sets new process elapsed time limit.

Synopsis: setRealTimeLimit (new max)

Arguments:
¢ new_max: Integer — new elapsed time limit in seconds. -1 means no limit.

Return value: 2-tuple (status, text)

e status: Integer - is 1 on success and 0 on failure
e text: String —-textual explanation of the reason for failure

refresh
Purpose: updates object’s data members with current information.

Synopsis: refresh ()
Arguments: none

Return value: none

-67 -



FBSNG API Reference Manual Version 1.5
FBSProcTypelnfo Class

Examples:
# monitor resource utilization per process type
from FBS API import FBSClient
fc=FBSClient ()
types = fc.getProcessTypelist ()

# get list of all resources
rlist = fc.getLocalRsrcList () + fc.getGlobalRsrcList ()

# make list of FBSProcTypeInfo objects

ptlist = []

for pt name in types:
ptlist.append(fc.getProcessType (pt name))

while 1:
for pti in ptlist:
pti.refresh ()
print ‘Process type ‘,pti.Name,’:’
for rn in rlist:

if not pti.RsrcQuota.has key(rn) or \

pti.RsrcQuotal[rn] == None:
# no quota defined = unlimited
quota = ‘(unlimited)’

else:
quota = pti.RsrcQuotalrn]

if not pti.RsrcUsage.has key(rn):
# not used by this proc. class
usage = 0

else:
usage = pti.RsrcUsage[rn]

print ‘Resource %s: %s used out of %s quota’ %\
(rn, usage, quota)

setUsers

Purpose: to define list of users authorized to use the process type (see Users data
member). Only FBSNG administrator can use this method.

Synopsis: setUsers(list_of_users)
Arguments:
e list_of_users: List of Strings - list of users authorized to use the process type.

Value of this argument supersedes old value. If the list contains string “*”,
the rest of the list is ignored.

- 68 -



FBSNG API Reference Manual Version 1.5
FBSProcTypelnfo Class

Example:
#

# Replace user “bob” with user “alice” in all process type
# user lists

#
from FBS API import FBSClient

fc=FBSClient ()
for ptn in fc.getProcessTypelist () :
pti = fc.getProcessType (ptn)
users = pti.Users](:]
if “bob” in users:
users.remove (“bob”)
users.append(talice”)
pti.setUsers (users)

allowNodes

Purpose: defines list of nodes the processes of this type are allowed to run on (see
NodesAllow data member). This method can be used only by FBSNG administrator or
an user authorized to use the process type.

Synopsis: allowNodes(list_of_nodes)

Arguments: list_of _nodes: List of Strings — list of node named where processes of
this type are allowed to start. Value of this argument supersedes old value. If the list
contains string “*”, the rest of the list is ignored.

disallowNodes

Purpose: defines list of nodes the processes of this type are disallowed to run on
(see NodesDisllow data member). This method can be used only by FBSNG
administrator or an user authorized to use the process type.

Synopsis: disallowNodes(list_of_nodes)
Arguments: list_of nodes: List of Strings - list of hode named where processes of

this type are not allowed to start. Value of this argument supersedes old value. If the
list contains string “*”, the rest of the list is ignored.

- 69 -



FBSNG API Reference Manual Version 1.5
FBSProcTypelnfo Class

Example 1:
#
# Something is wrong with node “pcl3”. Make sure processes
# of type “Worker” will not run there. For processes of
# this type, this will be equivalent to holding the node.
#

from FBS API import FBSClient

fc=FBSClient ()

pti=fc.getProcessType (“Worker”)

pti.allowNodes ([“*"])

pti.disallowNodes (pti.NodesDisallow + [“pcl3”])

Example 2:
#

# Run processes of type “dbwriter” only on nodes
# pcl - pclb
#

from FBS API import FBSClient

fc=FBSClient ()
pti=fc.getProcessType (“Worker”)
1st = []
for i in range(1l5):

lst.append (“pc%d” $ (i+1))
pti.disallowNodes ([“*"])
pti.allowNodes (1lst)

-70 -



FBSNG API Reference Manual Version 1.5
FBSProcTypelnfo Class

16 FBSEventListener Class

FBSEventListener is a virtual base class designed to provide interface to FBSNG
Event Manager. Client application is supposed to create a subclass of this class to
implement its own asynchronous event receiving and processing functionality.

16.1 Methods

The following are methods of FBSEventListener class available to the client
application.

subscribe

Purpose: subscribe notifications about a section status changes. This method can be
called more than once to subscribe to the notifications about more than one section
of one or more jobs.

Synopsis: subscribe(sect_id)

Arguments:
e sect_id: String — ID of the section.

Return value: none

Generates KeyError exception if the section does not exist.

unsubscribe
Purpose: stop receiving notification about a section status changes.

Synopsis: unsubscribe(sect_id = None)
Arguments:
e sect_id: String — ID of the section. If omitted, will cancel all current

subscriptions.

Return value: none

sectionState

Purpose: return most recent state of the section as received as received during latest
call to subscribe or wait method.

Synopsis: sectionState(sect_id)

Arguments:
e sect_id: String — ID of the section.

Return value: String — state of the section: “waiting”, “ready”, "running”, etc.

Generates KeyError exception if the EventListener is not subscribed to notifications
about the specified section.

-71 -



FBSNG API Reference Manual Version 1.5
FBSProcTypelnfo Class

processState

Purpose: returns most recent state of the batch process as received during latest call
to subscribe or wait method.

Synopsis: processState(sect_id, procno)

Arguments:
e sect_id: String — ID of the section.
e Procno: Integer - Logical process ID

” ” n n

Return value: String - state of the batch process: “pending”, “running”, "exited”.
Generates KeyError exception if the EventListener is not subscribed to notifications
about the specified section.

wait

Purpose: wait for state change notifications. When this method is called,
EventListener object receives state change notification events from FBSNG. While the
call to this method is in progress, EventListener calls its own virtual methods
sectionStateChanged, processStateChanged and sectionDeleted described below.
User can control how long to wait for events by specifying optional nmax or tmo or
both arguments.

When one of the sections the EventListener is subscribed to gets deleted,
EventListener automatically un-subscribes from the notifications about the section.

Synopsis: wait(nmax=None, tmo=-1)

Arguments:

¢ nmax: Integer - if specified, the method will block until the specified humber
of events are received. The number of received events includes ignored
events too. If not specified, the method will wait forever, or until the time
specified by “tmo” argument elapses.

e tmo: Integer - if specified, the method will block until the specified number of
seconds elapses. If not specified, the method will wait forever, or until the
number of events specified by “"nmax” argument is received.

If both arguments are specified, the method will block until either the time-out
passes, or certain number of events are received, whichever occurs earlier.
If neither argument is specified, the method will block forever.

Return value: Integer — number of events received.

16.2 Virtual Methods

FBSEventListener has three virtual methods that are to be overridden by the user to
add necessary event processing functionality. User does not have to override all
three of them. Methods of the base class do nothing, so if they are not overridden,
corresponding events will be ignored.

-72 -



FBSNG API Reference Manual Version 1.5
FBSProcTypelnfo Class

sectionStateChanged

Purpose: this method is called to notify that the state of one of sections the Event
Listener object is subscribed to has changed.

Synopsis: sectionStateCanged(self, sect_id, old_state, new_state)

Arguments:
e sect_id: String — ID of the section.
e old_state: String — previous state of the section
e new_state: String — new state of the section

Return value: ignored

processStateChanged

Purpose: this method is called to notify that the state of one of processes of a
section the Event Listener object is subscribed to has changed.

Synopsis: processStateCanged(self, sect_id, procno, old_state, new_state)

Arguments:
e sect_id: String — ID of the section
e procno: Integer - logical ID of the process
e old_state: String — previous state of the section
e new_state: String - new state of the section

Return value: ignored

sectionDeleted

Purpose: this method is called when one of sections the Event Listener object is
subscribed has been deleted from FBSNG. The user does not have to explicitly un-
subscribe from the deleted section information because EventListener does it
automatically.

Synopsis: sectionDeleted(self, sect_id)

Arguments:
e sect_id: String — ID of the section.

Return value: ignored

16.3 Event Listener Programming Examples

Example 1: Monitoring section status

The following example illustrates features of the Event Listener API. This is sample
application, which can be used to wait for one or more job sections to finish.

-73-



FBSNG API Reference Manual Version 1.5
FBSProcTypelnfo Class

from FBS API import FBSEventListener

# define my own event listener class
class MyEventListener (FBSEventListener) :
def init (self, sid list):

# call the superclass constructor
FBSEventListener. init (self)

# subscribe to all sections
self.Nalive = 0 # number of not-yet-deleted
# sections
for sid in sid list:
try: self.subscribe(sid)
except KeyError:
print ‘Section does not exist: %s’ % sid
else:
self.Nalive = self.Nalive + 1

# We are interested in section state changes
# Override base class methods

def sectionStateChanged(self, sid, old state, new state):

print ‘Section %s: %s -> %s’ % \
(sid, old state, new state)

def sectionDeleted(self, sid):
print ‘Section %s deleted’ % sid
self.Nalive = self.Nalive - 1

# We are not concerned about individual process states,
# therefore, we will leave processStateChanged method
# as it is.

#

# This is our main code

# Usage: python wait.py <sid> ..
#

import sys

import time

listener = MyEventListener (sys.argv[l:])
while listener.Nalive > 0:

nevents = listener.wait(nmax = 1, tmo = 10)
print ‘%s: %d events received’ %\
(time.ctime (time.time()), nevents)

print ‘All sections are deleted’

-74 -



FBSNG API Reference Manual Version 1.5
FBSProcTypelnfo Class

Example 2: Polling for section status changes

Although EventListener provides necessary functionality to avoid using polling
technique to monitor batch job status, it may be worthwhile to illustrate how
EventListener can be used in that mode. The following example works in the way
very similar to calling FBSSectionInfo.refresh method periodically and printing state
of the section when it changes.

from FBS API import FBSEventListener
import sys

1=FBSEventListener ()

try: l.subscribe('1234.Main’)

except KeyError:
print ‘Section does not exist’
sys.exit (1)

old state = l.sectionState(‘'1234.Main’)

print old state

deleted = 0

while not deleted:
# wait for 1 event or 10 seconds
# remove second argument to block until next event
n = l.wait (1, 10)

if not n:
# nothing happened
continue
try: new state = l.sectionState(‘'1234.Main’)

except KeyError:
# section deleted
deleted =1
else:
if new state != old state:
print new state
old state = new_ state
print ‘Section has been deleted’

-75 -



FBSNG API Reference Manual Version 1.0
JDF Format

Appendix A: JDF Format

Job Description File (JDF) is a plain text file that contains complete description of an
FBSNG job to be submitted. JDF consists of one or more section descriptions. Each
section description consists of SECTION line followed by one or more section
parameter lines:

SECTION <section-name>
<parameter> = <value>
<parameter> = <value>

SECTION <section-name>
<parameter> = <value>
<parameter> = <value>

Blank lines in JDF are ignored. Pound character (#) in the beginning or in the middle
of line can be used to indicate start of a comment. Blank characters around required
“equals” signs (=) are ignored. Order in which sections appear in JDF is not
important. Each section must have a unique name. Only alphanumeric characters,
underscore (_) and hyphen (-) may be used for section names. Section names must
start with a letter. Section names are case-sensitive. "SECTION” keyword and
parameter names must be in upper case. If the same parameter is appears more
than once in the same section description, the value set by the last occurrence will
be used, otherwise section parameters can be listed in any order.

For each section, QUEUE and EXEC parameters must be specified. All other
parameter values have defaults listed in the table below.

FBSNG API recognizes the following section parameters:

JDF Fields
Keyword Type Corresponding |Description
(synonym) (Default) FBSSectionDesc
Field

NUMPROC Integer NProc Number of processes in the section
(1)

QUEUE string Queue Queue name
(required)

EXEC string Exec Command to execute
(required)

PROC_TYPE string ProcType Section process type
(Queue default)

NEED 0/1 Need NEED flag
(0)

LEADER_ONLY 0/1 LeaderOnly LEADER_ONLY flag
(0)

PRIO_INC integer PrioIlnc Initial section priority increase
(0)

NICE integer Nice Nice level for processes
(0)

-76 -



JDF Format

(no restrictions)

FBSNG API Reference Manual Version 1.0
Keyword Type Corresponding |Description
(synonym) (Default) FBSSectionDesc
Field

HOLD_TIME date/time HoldTime Time to hold the section

(AFTER) (none)

PROC_RESOURCES|<rsrc>:<n> ... |PerProcRsrc Resources required for each process in
<attr> ... addition to process type default
(none)

SECT_RESOURCES |<rsrc>:<n> ... |PerSectRsrc Resources required for the section in
(none) addition to process type default

MAILTO e-mail address  |MailTo Address to send section report to.
(none)

DEPEND dep. Expression |Depend Section dependency specification
(none)

STDERR pattern Stderr Template for process stderr file name
(FBS_%;j.%n.err)

STDOUT pattern Stdout Template for process stdout file name
(FBS_%j.%n.out)

SECT_STDOUT pattern SectOutput Template for section log file name
(none)

ON_NODES <node name> ... |OnNodes List of nodes processes of the section are

allowed to start on

-77 -

For more information about meaning of section parameters see FBSNG User’s Guide.




FBSNG API Reference Manual Version 1.0
JDF Format

Example of JDF:

SECTION Pre-stage
QUEUE = PreStageQ # QUEUE is required
# NUMPROC is 1 by default
EXEC = /home/el234/stage-data.sh -v XYZ123
# EXEC is required

# Main production section
SECTION Process

QUEUE = E1234-ProdQueue
NUMPROC = 10

DEPEND = done (Pre-stage)

run 10 processes

start only if Pre-stage

was successful

run only on Linux computers
request 5 GB of scratch
disk space

relative path (w.r.t. HOME)
template for process stdout

PROC_RESOURCES = Linux scratch:5

EXEC = process-data.sh -v XYZ123
STDOUT = logs/%]j.%n.out

H o S S R R 3

# Next section will store output to tape
SECTION Save data

EXEC = save-data.sh -v OUT567

DEPEND = done (Process)

QUEUE = IOQueue

SECTION Clean up # this is emergency clean-up section.
# run it only if something went wrong

QUEUE = FastQ

PRIO INC = 15 # submit at higher priority
EXEC = clean-up.sh -i XYZ123 -o OUT567

DEPEND = failed(Process) || failed(Pre-stage)

STDERR = /dev/null # ignore stderr

STDOUT = /dev/null # and stdout

MAILTO = err-log # mail section output

-78 -



FBSNG API Reference Manual Version 1.0
Hold Time Representation

Appendix B: Hold Time Representation

When submitting a job, the user can request that one or more sections of the job
should be held until some time in future in the queue without starting. The time to
hold the section until is called the hold time. Hold time can be specified in the JDF or
in the HoldTime field of an FBSSectionDesc object. In both places, time can be
specified as a text string in one of the following formats:

[<date>-][<time>] - absolute date/time specification
Use this format for a specific point of time on specific date. If the date field is omitted, today is
assumed. If time is omitted, current time of day is assumed.

+<days>-[<time>] - absolute time specification at later day

This form represents a specific point of time today or <days> days later. If time is omitted,
midnight is assumed. If <days> is 0, it is interpreted as "the next time the wall clock shows the
specified time". This can be today or tomorrow. <days> is 1 means "tomorrow at the specified
time", <days>=2 means "the day after tomorrow at the specified time" and so on.

+<time> - relative time specification
This form specifies future time as current day/time plus a certain number of hours,
minutes and seconds.

In addition, hold time can be specified as the keyword “forever” (hold section
indefinitely) or *None” (do not hold, start as soon as possible).

In the above formats, <date> is [mm/]dd[/yyyy]. If month (mm) is omitted, the current
month is implied, and if year (yyyy) is omitted, the current year is implied.

<time> is hh[:mm{[:ss]]. If minutes field (mm) is omitted, 00 is implied. If seconds field (ss) is
omitted, 00 is implied.

<days> is an unsigned integer number.

Examples of hold time representation:
"4/1/2000-" hold until midnight April 1 2000.

If that is already in the past, do not hold.
"7/8/2000-05:00"  hold until 5am July 8 Th 2000

"10:00:00" hold until 10am today. If it's past 10am, do not hold.
"+3:00:00" hold for 3 hours

"+1-06:00:00" hold until tomorrow 6am

"+0-12:00:00" if current time is before noon,

then hold until noon today,

otherwise until noon tomorrow.
"forever" hold the section forever
"None" do not hold at all

-79 -



FBSNG API Reference Manual Version 1.5
API Examples

Appendix C: More APl Examples

The following example to illustrates job submission and monitoring using FBSClient,
FBSJobDesc, FBSSectionDesc, FBSSectionInfo and FBSProcessInfo classes:

- 80 -



FBSNG API Reference Manual
API Examples

Name: exec.py

This is a script which can be used to emulate LSF-style
single-process job submission.

Usage: python exec.py

-q <queue> [-v] [-n <numproc>] [-p <proctype>]
[-w <seconds or -1>] [-h <hold-date-time>]
[-r <resources>] [-1 <priority increment>]

[-s <section-name>]
<command> [<argument> ...]

exec.py submits single-section FBSNG job that

will execute the specified command. If requested,

exec.py will wait for the section to complete and exit with
section exit code. User can specify additional parameters
such as process type, hold time, extra resources and

FBSNG queue priority increment.

If requested, the script will print section parameters as
JDF and report where and when individual processes start.

S e S S SR o e e SE o o SR o e SR o o o SR e e 3E

from FBS API import *
import string

import getopt

import sys

import Parser

import time

usage = LRI}

exec.py —g <queue> [-Vv] [-n <numproc>] [-p <proctype>]
[-w <seconds or -1>] [-h <hold-date-time>]
[-r <resources>] [-1 <priority increment>]

[-s <section-name>]
<command> [<argument> ...]

wuan

def main() :
over dict = {}
sn = "Exec" # default section name
wait = 0 # by default, do not wait
verbose = 0
queue = None

try: opts, args = getopt.getopt(sys.argv[l:],
'vg:p:n:w:s:r:a:i:")

except getopt.error, msg:
print msg

return
for opt, val in opts:
if opt == '-q': queue = val
elif opt == '-v': verbose =1
elif opt == '-h': over dict["HoldTime"] = val
elif opt == '-p': over dict["ProcType"] = val
elif opt == '-s': sn = val
elif opt == "'-r': over dict["PerProcRsrc"]

-81 -

Version 1.5



FBSNG API Reference Manual Version 1.5
API Examples

Parser.wordsToDict (val, defValue = 0)

elif opt == '-n':

over dict["NProc"] = string.atoi(val)
elif opt == '-i':

over dict["PrioInc"] = string.atoi (val)
elif opt == "-w':

if val == 'forever': wait = -1

else: wait = string.atoi(val)

if not queue:
# queue is required
print usage
return 1

cmd = string.join (args)
if not cmd:
print usage
return 1

fc=FBSClient () # establish connection to FBSNG
j=FBSJobDesc () # create job description

# create section description, set section parameters
s=FBSSectionDesc(sn, override = over dict,
Queue = queue, Exec = cmd)

if verbose:
print s # print as JDF

# add the section to the job and submit the job
j.addSection (s)
sts, jid = fc.submitJob (j)
if not sts:
# error
print 'Submit failed: %s' % jid
return 1
else:
# job submitted, print its id
print 'Job %s' % jid

# 1if requested, wait for completion

t = time.time ()

sid = "%s.%s' % (jid, sn)

s = fc.getSection (sid)

state = "'

print start =1

while wait < 0 or time.time() < t + wait:

try: s.refresh ()

except KeyError:
# section disappeared. See history.
print 'not found'
return -1

if verbose and s.State != state:
# report state change
state = s.State
msg = '%s' $ state
t = time.time ()

-82 -



FBSNG API Reference Manual Version 1.5

API Examples

if state == 'running':
t = s.StartTime
try:

# print where 1-st process started
pi=s.getProcess (1)
msg = msg + (' on %s, pid = %d' %
(pi.Node, pi.UPID))
except:
# process not found (?)
pass
print start = 0
elif state == 'done':
if print start:
print '$s: running' % \
time.ctime (s.StartTime)
print start = 0
t = s.EndTime
print '$s:%s' % (time.ctime (t),msqg)
if s.State in ['waiting', 'ready', 'running']:
# it is not over yet, wait
time.sleep (10)
continue
# now the section is done.
print s.State, s.ExitCode
return s.ExitCode

if name == "' main
sys.exit (main())

The following example illustrates features of FBSQueuelnfo and FBSSectionInfo
classes and how to use them to monitor state of FBSNG queues.

- 83 -



FBSNG API Reference Manual Version 1.5
API Examples

Name: getqg.py

Print information about queues and sections in the queues

Usage: python getqg.py (-1|[-s])

Options: -1 - print 1l-line summary per queue, do not
print individual sections

-s - short and quick output: print limited
information about sections

e e E

from FBS API import FBSClient
import time

import sys

import getopt

short = 0
one line = 0

opts, args = getopt.getopt(sys.argv[l:],'sl")
for opt, val in opts:

if opt == '-s': short =1
if opt == '-1': one line =1
fc = FBSClient ()

gl = fc.getQueuelist ()
for gn in qgl:
g = fc.getQueue (gn)
print 'Queue %-10.10s: Prio=%-3d +%-3d -%-3d Gap=%-3d' % (
gn, g.Prio, g.QPInc, q.QPDec, g.QPGap),
print 'R/P/T=%-3d/%-3d/%-3d' % (g.NRunning, q.NPending,
len(g.Sections))
if not one line:

if short:
for sid in g.Sections:
print '%-15.15s(%3.3s) Prio=%3d' % (
sid, g.SectState[sid], g.SectPriol[sid])
else:

for sid in g.Sections:
try: s = fc.getSection(sid)
except: continue
print '$-15.15s(%3.3s) %10s %$-3d %$1d %3d %3d's\
(sid, s.State[:3], s.ProcType, s.NProc,
s.Need, s.Prio, s.QIndex)
if s.HoldTime:
print ' Hold until: %s' %
time.ctime (s.HoldTime)
if s.Depend:
print ' Depends: %$s' % s.Depend

-84 -



FBSNG API Reference Manual Version 1.5
Glossary

Appendix D: Glossary of Terms

Job ID - A string that uniquely identifies an FBSNG Job. A job is assigned an
ID at the submission time.

Section ID - A string that uniquely identifies an FBSNG job section. Section ID is
constructed from job ID and section name:

<SectionID> = <JobID>.<SectionName>

For example, section named “"Main” of job with job ID “1234" will have section ID
“1234.Main”.

Batch Process ID (BPID) - A string that uniquely identifies a batch process. It is
constructed from section ID and logical process ID:

<BPID> = <SectionID>.<LogicalPID>

For example, process number 3 of section with ID “1234.Main” will have BPID
“1234.Main.3".

Logical Process ID - Sequence number of the processes of the section. FBSNG job
sections can be viewed as arrays of identical processes. Logical process ID is an
index in such an array. Logical process IDs of a section processes starts from 1.

Main or Root Batch Process - The batch process actually started by FBSNG. It
is referred as “root” because it usually is the root of a UNIX process tree.

- 85 -



FBSNG API Reference Manual

Index
__repr__
FBSJobDesc method, 37
FBSSectionDesc method, 42
ACPUTime
FBSProcessinfo data member, 51
FBSSubProcessInfo data member, 53
addNode
FBSNodeClassInfo method, 55
example, 29, 56
addSection, 36
FBSJobDesc method
example, 36, 37, 38, 42
AFTER
JDF field, 77
allowNodes
FBSProcessTypelnfo method, 69
Batch Process ID, 85

BPID, 85
FBSProcessInfo data member, 51
format, 16
Class
FBSNodelnfo data member, 57
clone
FBSSectionDesc method, 41
example, 36, 42
Command
FBSProcessInfo data member, 51
FBSSubProcessInfo data member, 53
Core
FBSProcessInfo data member, 51
CPUTime
FBSProcessInfo data member, 51
FBSSubProcessInfo data member, 53
CPUTimeLimit
FBSProcTypelnfo data member, 64
FBSQueuelnfo data member, 59
FBSSectionInfo data member, 46
createGlobalResource
FBSClient method, 20
example, 21
createlLocalResource
FBSClient method, 23
createNodeClass
FBSClient method, 29
example, 29
createProcessType
FBSClient method, 32
example, 33
createQueue
FBSClient method, 16
example, 17, 62
createRsrcPool
FBSClient method, 26
example, 26
CurrentNodeCount
FBSProcTypelnfo data member, 64
DefProcType

FBSQueuelnfo data member, 59

Version 1.5

Depend

FBSSectionDesc data member, 39, 77

FBSSectionInfo data member, 47
DEPEND

JDF field, 77
disallowNodes

FBSProcessTypelnfo method, 69
EndTime

FBSSectionInfo data member, 46
Example

node

moving from one class to another
example, 56

Exceptions

FBSError, 10

KeyError, 9

socket.error, 10

SyntaxError, 35
Exec

FBSSectionDesc data member, 39, 76

FBSSectionInfo data member, 46
EXEC

JDF field, 76
ExitCode

FBSProcessInfo data member, 51

FBSSectionInfo data member, 47
ExitTime

FBSProcessInfo data member, 51

FBSClient, 11
FBSError

exception, 10
FBSEventListener

Example, 73
FBSEventListener Class, 71

FBSJobDesc
class, 35
constructor
example, 11, 35, 36, 37, 38
FBSJobInfo
cass, 43
FBSNodeClassInfo
class, 53
FBSNodelnfo
class, 57
FBSProcessInfo
class, 51
FBSProcTypelnfo
class, 64
FBSSectionDesc
class, 39
constructor
example, 41
FBSSectionInfo
Class, 46
FBSSubProcessinfo
class, 53

getGblRsrcQuota, 21



FBSNG API Reference Manual Version 1.5

example, 22 example, 14
getGblRsrcUsage, 22 GID
example, 22 FBSJobInfo data member, 43
getGlobalPoolList FBSSectionInfo data member, 46
FBSClient method, 27 global resource, 21
example, 28 global resources
getGlobalRsrcList creation, 20, 23
example, 21, 68 hasSection, 36
FBSClient method, 21 FBSJobDesc method
getlob, 12 example, 37, 38
FBSClient method hold
example, 12, 44, 45, 48, 49, 50 FBSQueuelnfo method, 59
getloblist, 11 FBSSectionInfo method, 48
FBSClient method Hold time, 79
example, 12, 13, 44 Hold Time
getLclRsrcQuota, 24 representation, 79
example, 24 HOLD_TIME
getLclRsrcUsage, 24 IDF field, 77
example, 25 holdNode, 31
getLocalPoolList example, 32
FBSClient method, 27 holdQueue, 18
example, 27, 28 FBSClient method
getLocalRsrclList, 23 example, 18
example, 24, 68 HoldReason
getNode, 31, 57 FBSNodelnfo data member, 57
FBSClient method holdSection, 14
example, 32, 54, 58 FBSClient method
getNodecClass, 30, 53 example, 14
example, 31, 32, 54 HoldTime
FBSClient method FBSSectionDesc data member, 39, 77
example, 23, 55, 56 FBSSectionInfo data member, 46
getNodeClasslInfo ID
example, 30 FBSJobInfo data member, 43
getNodeClassList, 29 FBSSectionInfo data member, 46
example, 30 incPrio, 49
getProcess incSectPrio, 15
FBSClient method, 16 FBSClient method
FBSSectionInfo method, 47 example, 15
getProcessType, 33, 34 isHeld
FBSClient method FBSSectionInfo method, 47
example, 65 ) IsHeld
getPro_cessTypeLlst, 32 FBSNodeInfo data member, 57
FBSClient method FBSQueuelnfo data member, 59
example, 32 IsLocked
getQueue, 17, 59 FBSQueuelnfo data member, 59

FBSClient method IsUp
example, 15, 16, 18, 20, 60, 61, 62, 63 FBSNodelnfo data member, 57

geFtB%‘éﬁgnﬁ';Lsett%jj IDF, 35, 37, 38, 42, 47, 76, 79

example, 17, 18, 19, 20, 60, 61 JDFSeq
getResourcePooI FBSSectionInfo data member, 47
FBSClient method, 28 Job Description File, 76
example, 27, 28 Job ID, 85
getSection JobID
example, 9, 13, 47, 48, 50 FBSSectionInfo data member, 46
FBSClient method, 13 KeyError
example, 10 exception, 9
FBSJobDesc method, 35 Kill
FBSJobInfo method, 43 FBSJobInfo method, 44
getSectionOutput, 13 FBSSectionInfo method, 49

FBSClient method



FBSNG API Reference Manual

killJob, 12
FBSClient method
example, 13
killSection, 15
FBSClient method
example, 16
LEADER_ONLY
JDF field, 76
LeaderOnly
FBSSectionDesc data member, 39, 76
FBSSectionInfo data member, 46
local resources
creation, 54
LocalDisks
FBSNodeClassInfo data member, 53
lock, 60
lockQueue, 19
FBSClient method
example, 19
Logical Process ID, 85
MailTo
FBSSectionDesc data member, 39, 77
MAILTO
JDF field, 77
Main Batch Process, 85
MaxNodeCount
FBSProcTypelnfo data member, 64
MaxPrioInc
FBSProcTypelnfo data member, 64
MaxQPrio
FBSQueuelnfo data member, 59
MaxSPrio
FBSQueuelnfo data member, 59
Message
FBSProcessInfo data member, 51
MinNice
ProcessTypelnfo data member, 64
MinQPrio
FBSQueuelnfo data member, 59
Name
FBSNodeClassInfo data member, 53
FBSNodelnfo data member, 57
FBSProcTypelnfo data member, 64
FBSQueuelnfo data member, 59
FBSSectionDesc data member, 39
FBSSectionInfo data member, 46
Need
FBSSectionDesc data member, 39, 76
FBSSectionInfo data member, 46
NEED
JDF field, 76
Nice
FBSSectionDesc data member, 39, 76
NICE
JDF field, 76
node
creation, 55
moving from one class to another, 56
Node

FBSProcessinfo data member, 51

Version 1.5

Node Class, 53
Nodes

FBSNodeClassInfo data member, 53
NodesAllow

FBSProcTypelnfo data member, 64
NodesDisallow

FBSProcTypelnfo data member, 64
NPending

FBSQueuelnfo data member, 59
NProc

FBSSectionDesc data member, 39, 76

FBSSectionInfo data member, 46
NRunning

FBSQueuelnfo data member, 59
NUMPROC

JDF field, 76
ON_NODES

JDF field, 77
OnNodes

FBSSectionDesc data member, 39

FBSSectionInfo data member, 47
PerProcRsrc

FBSSectionDesc data member, 39, 77

example, 42

FBSSectionInfo data member, 46
PerSectRsrc

FBSSectionDesc data member, 39, 77

FBSSectionInfo data member, 46
Power

NodeClassInfo data member, 53
Prio

FBSQueuelnfo data member, 59

FBSSectionInfo data member, 46
PRIO_INC

JDF field, 76
PrioInc

FBSSectionDesc data member, 39, 76

FBSSectionInfo data member, 46
PROC_RESOURCES

JDF field, 77
PROC_TYPE

JDF field, 76
Process

ID format, 16
Processes

FBSNodelnfo data member, 57
processState

FBSEventListener method, 72
processStateChanged

FBSEventListener method, 73
ProcRsrcDefaults

FBSProcTypelnfo data member, 64
ProcType

FBSSectionDesc data member, 39, 76

FBSSectionInfo data member, 46
ProcTypes

FBSQueuelnfo data member, 59
QPDec

FBSQueuelnfo data member, 59

QPGap



FBSNG API Reference Manual

FBSQueuelnfo data member, 59
Queue
FBSSectionDesc data member, 39, 76
FBSSectionInfo data member, 46
QUEUE
JDF field, 76
RarsUsage
FBSProcTypelnfo data member, 64
RealTimeLimit
FBSProcTypelnfo data member, 64
FBSQueuelnto data member, 59
FBSSectionInfo data member, 46
refresh
FBSJobInfo method, 44
FBSNodeClassInfo method, 54
FBSNodelnfo method, 57, 62
FBSProcTypelnfo method, 67
FBSQueuelnfo method, 62
FBSSectionInfo method, 50, 52, 75
example, 10, 50
release
FBSQueuelnfo method, 60
FBSSectionInfo method, 48
releaseNode, 32
FBSClient method
example, 56
releaseQueue, 18
FBSClient method
example, 19
releaseSection, 14
FBSClient method
example, 15
removeGlobalResource, 22, 23
removelocalResource, 25, 26
removeNode, 56
removeNodeClass, 30, 31
removeProcessType, 33, 34
removeQueue, 20
removeResourcePool, 28, 29
resource pool, 21, 22, 24, 27, 28, 46,
51
ResourceCap
FBSNodeClassInfo data member, 53
example, 23
Resources
FBSNodelnfo data member, 57
Root Batch Process, 85
RsrcPoolDict
FBSProcessinfo data member, 51
FBSSectionInfo data member, 46
RsrcQuota
FBSProcTypelnfo data member, 64
SDTERR
JDF field, 77
SECT_RESOURCES
JDF field, 77
SECT_STDOUT
JDF field, 77
section

Version 1.5

ID format, 13
Section
output, 13
Section ID, 85
sectionDeleted
FBSEventListener method, 73
sections
FBSJobDesc method, 37
FBSJobInfo method, 43
Sections
FBSQueuelnfo data member, 59
sectionState
FBSEventListener method, 71
sectionStateChanged
FBSEventListener method, 73
SectOutput
FBSSectionDesc data member, 39, 77
FBSSectionInfo data member, 46
SectPrio
FBSQueuelnfo data member, 59
SectRsrcDefaults
FBSProcTypelnfo data member, 64
SectState
FBSQueuelnfo data member, 59
setCPUTimeLimit
FBSProcTypelnfo method, 67
setGlobalResource
FBSClient method, 21
example, 21
setlLocalDisks
FBSNodeClassInfo method, 55
example, 55
setMaxNodeCount
FBSProcTypelnfo method, 66
setMaxPriolnc
FBSProcTypelnfo method
example, 65
FBSProcTypelnfo method, 66
setProcRsrcDefs
FBSProcTypelnfo method, 33, 65
example, 65
setRealTimeLimit
FBSProcTypelnfo method, 67
setRsrcCap
FBSNodeClassInfo method, 54
example, 23, 29, 55
setRsrcPool
FBSClient method, 26
example, 27
setRsrcQuota
FBSProcTypelnfo method, 33, 66
example, 65
setSectRsrcDefs
FBSProcTypelnfo method, 65, 66
example, 65
setTimeOut
FBSClient method, 34
setUsers
FBSProcessTypelnfo method, 68
Signal



FBSNG API Reference Manual

FBSProcessInfo data member, 51
socket.error

exception, 10
SPGap

FBSQueuelnfo data member, 59
StartTime

FBSProcessInfo data member, 51

FBSSectionInfo data member, 46
state

of a job, 43
State

FBSJobInfo data member, 43

FBSSectionInfo data member, 47
Status

FBSProcessinfo data member, 51
Stderr

FBSSectionDesc data member, 39, 77

FBSSectionInfo data member, 46
Stdout

FBSSectionDesc data member, 39, 77

FBSSectionInfo data member, 47
STDOUT

JDF field, 77
submitJob

FBSClient method

example, 11, 35

Subprocesses

FBSProcessInfo data member, 51

FBSSubProcessInfo data member, 53
subscribe

FBSEventListener method, 71

Version 1.5

SubTime
FBSSectionInfo data member, 46
SyntaxError
exception, 35
UID
FBSJobInfo data member, 43
FBSSectionInfo data member, 46
underlying resource, 28
unlock, 61
FBSQueuelnfo method
example, 62
unlockQueue, 19
FBSClient method
example, 20
unsubscribe
FBSEventListener method, 71
update
FBSQueuelnfo method, 61
example, 62
UPID
FBSProcessinfo data member, 51
FBSSubProcessInfo data member, 53
Users
FBSProcTypelnfo data member, 64
FBSQueuelnfo data member, 59
validateDependencies, 37
ValueError
exception, 11, 36
wait
FBSEventListener method, 72



	Introduction
	FBSNG API Overview
	Using FBSNG API
	Common Features of API Classes
	Returning Status
	Generated Exceptions

	FBSClient Class
	FBSClient Methods
	Constructor FBSClient
	submitJob
	getJobList
	getJob
	killJob
	getSection
	getSectionOutput
	holdSection
	releaseSection
	incSectPrio
	killSection
	getProcess
	createQueue
	getQueueList
	getQueue
	holdQueue
	releaseQueue
	lockQueue
	unlockQueue
	removeQueue
	createGlobalResource
	setGlobalResource
	getGlobalRsrcList
	getGblRsrcQuota
	getGblRsrcUsage
	removeGlobalResource
	createLocalResource
	getLocalRsrcList
	getLclRsrcQuota
	getLclRsrcUsage
	removeLocalResource
	createRsrcPool
	setRsrcPool
	getLocalPoolList
	getGlobalPoolList
	getResourcePool
	removeResourcePool
	createNodeClass
	getNodeClassList
	getNodeClass
	removeNodeClass
	getNode
	holdNode
	releaseNode
	getProcessTypeList
	createProcessType
	getProcessType
	removeProcessType
	setTimeOut


	FBSJobDesc Class
	Methods
	Constructor
	getSection
	addSection
	hasSection
	sections
	validateDependencies
	__repr__


	FBSSectionDesc Class
	Data Members
	Methods
	Constructor
	clone
	__repr__


	FBSJobInfo Class
	Data Members
	Methods
	sections
	getSection
	kill
	refresh


	FBSSectionInfo Class
	Data Members
	Methods
	getProcess
	isHeld
	hold
	release
	incPrio
	kill
	refresh


	FBSProcessInfo Class
	Data Members
	Methods
	refresh


	FBSSubProcessInfo Class
	Data Members

	FBSNodeClassInfo Class
	Data Members
	Methods
	refresh
	setRsrcCap
	setLocalDisks
	addNode
	removeNode


	FBSNodeInfo Class
	Data Members
	Methods
	refresh


	FBSQueueInfo Class
	Data Members
	Methods
	hold
	release
	lock
	unlock
	update
	refresh


	FBSProcTypeInfo Class
	Data Members
	Methods
	setSectRsrcDefs
	setProcRsrcDefs
	setRsrcQuota
	setMaxPrioInc
	setMaxNodeCount
	setCPUTimeLimitt
	setRealTimeLimitt
	refresh
	setUsers
	allowNodes
	disallowNodes


	FBSEventListener Class
	Methods
	subscribe
	unsubscribe
	sectionState
	processState
	wait

	Virtual Methods
	sectionStateChanged
	processStateChanged
	sectionDeleted

	Event Listener Programming Examples
	Example 1: Monitoring section status
	Example 2: Polling for section status changes



